遺伝子検出を目指した新規蛍光核酸塩基の開発

齋藤 義雄

日大工・生命

【緒論】

極性、粘性、pH などの環境変化に応じて 発光波長が劇的に変化するような機能 を有する蛍光核酸を開発することが出 来れば、標的 DNA/RNA の検出のみなら ず、遺伝子配列中の特定の位置の塩基の 違いといった構造変化の認識を蛍光発 光色の変化で簡便に検出できるプロー ブとしての応用が期待される。そこで、 我々はこれまでに、周辺の環境変化に伴 って蛍光発光が変化する様々な7-デアザ プリンヌクレオシドの開発に取り組ん できた。それらのなかでも、8-アザ-7-デ アザ-2'-デオキシアデノシン cnaA はチミ ンと塩基対を形成した際にのみ、エチニ ルナフトニトリル由来の LE 発光を示す ことで簡便にチミンを識別できること に成功している。これは、メジャーグル ーブに突き出されたナフトニトリル部 位が核酸塩基間とで、ねじれ構造を形成 しているためであると考えられる (Figure 1)。本研究では、「新規環境感応 型蛍光核酸塩基の開発と遺伝子検出へ

の応用」を目指して、さらに高感度な蛍 光核酸塩基のデザインを行った。デザイ ンのコンセプトとして、核酸塩基部位に 蛍光色素となる多環芳香族化合物を、エ チニル基を介すことなく直接導入すれ ば、環境の違いで分子内のねじれ/平面 性がより変化しやすくなると考え、様々 なナフチル基を有する 8-アザ-7-デアザ -2'-デオキシアデノシン誘導体 1 の開発 を試みた。

【実験結果】

まずはじめに、各ナフチルボロン酸ピ ナコールエステル体 3a-d の合成を検討 した。続いて、8-アザ-7-デアザ-7-ヨード -2'-デオキシアデノシンと得られた各ナ フチルボロン酸ピナコールエステル体 を鈴木-宮浦クロスカップリングにより 反応させ、ナフチル基を連結させた新規 蛍光性 8-アザ-7-デアザ-2'-デオキシアデ ノシン誘導体 1a-d を合成した。また、そ れらの中で、特に優れた光学特性を示す 誘導体を DNA 自動合成機によりオリゴ デオキシヌクレオチド鎖 (ODN 鎖) へ導

Figure 1. (a) Structure of previously reported ESF nucleoside. (b) Structure of newly designed 7-naphthylated 8-aza-7-deaza-2'-deoxyadenosine derivatives

Table 1. Photophysical properties of fluorescent 8-aza-7-deaza-2'-deoxyadenosine derivatives.

Solvents	η°	1a		1b		10		1d	
		λ ^{fl} max (nm)	$\Phi_{\rm fl}{}^{\rm b}$	λ ^{fl} max (nm)	$\Phi_{\rm fl}{}^{\rm b}$	$\lambda_{max}^{fl}(nm)$	$\Phi_{\rm fi}^{\rm b}$	$\lambda_{max}^{fl}(nm)$	$\Phi_{\rm fi}^{\rm b}$
1,4-Dioxane	1.44	359	0.11	370	0.37	428	0.03	488	0.47
Ethyl acetate	0.45	358	0.08	382	0.28	433	0.01	494	0,29
DMF	0,92	361	0.13	415	0.22	452	0.02	524	0,21
DMSO	1,99	363	0.15	423	0.25	450	0.03	534	0,18
Acetonitrile	0.34	360	0.10	398	0.26	458	0.01	513	0,23
2-Propanol	2,04	363	0.16	389	0.26	480	0.01	514	0.19
Ethanol	1,20	364	0.14	394	0.27	489	0.01	520	0.13
Methanol	0,59	362	0.14	402	0,25	498	0.01	527	0.07
Ethylene glycol	19,9	365	0.21	400	0,25	493	0.01	529	0.08
Glycerol	1412	372	0.11	374	0.17	404	0.07	522	0.12

^a Viscosity (mPa s; 20°C)

^b Fluorescence quantum yields

入し、熱融解温度および光学特性の観点 から対面塩基識別能の評価を行った。

次に、合成により得られた蛍光ヌクレ オシドモノマー 1a-d を極性環境の異な る様々な溶媒中において蛍光スペクト ルの測定を行った。ナフタレン部位に置 換基を含まない化合物 1a では、溶媒の 極性変化に伴う発光波長変化がそれほ ど見られないのに対して、置換基を導入 した場合には、発光波長変化が大きくな ることがわかった (Figure 2)。特に、2-ナフトニトリルを含む **1b** ($\Delta\lambda$ = 53 nm) および 1-ナフチルアミン($\Delta\lambda = 94$ nm)を 含む 1c は、より優れたソルバトフルオロ クロミックな光学特性を示すことがわ かった (Table 1)。続いて、1b および1c のホスホロアミダイトユニットを合成 し、DNA 自動合成機により ODN 鎖へ導 入した。合成した ODN 鎖を相補鎖とハ イブリダイズさせ、熱融解温度(Tm)測 定を行った結果、修飾ヌクレオシド 1b および 1c の対面塩基がチミン以外の塩 基では、Tm 値の大きな低下がみられた。 従って、今回開発した7位にナフチル基 を有する 8-アザ-7-デアザ-2'-デオキシア デノシン誘導体は、チミン塩基とのみワ トソン-クリック型の塩基対を形成する ことが確認できた。さらに蛍光スペクト ルの測定を行ったところ、対面塩基が塩 基対を形成することが可能なチミンの 場合にのみ、発光波長の短波長シフトが みられた(Fig. 2)。以上の結果から 1b お よび 1c を含む ODN プローブは対面塩基 のチミンを発光波長変化で識別可能な ことが明らかとなった。

Figure 2. Fluorescence spectra of (a) 2.5 μ M ODN 1 hybridized with 2.5 μ M cODN 1 (N = A, G, C, or T) and (b) 2.5 μ M ODN 2 hybridized with 2.5 μ M cODN 2 (N = A, G, C, or T) (50 mM sodium phosphate, 0.1 M sodium chloride, pH 7.0, r.t.). Inset: Normalized fluorescence spectra.

【結論】

以上のように、目的とするチミン塩基 を識別することが可能な蛍光 DNA プロ ーブを得ることができた。現在、これら の蛍光 DNA プローブを搭載した DNA チ ップの開発に向けた検討を行っている。

【参考文献】

Y. Saito, A. Suzuki, T. Yamauchi, I. Saito, *Tetrahedron Lett., Memorial Symposium-in-Print for Harry Wasserman*, 2015, 56, 3034-3038.