Active aging を支援する人に優しい診断治療機器の開発 ー生体計測用テラヘルツ波分光イメージングシステムの開発-

四方 潤一 日大工・電気電子

【緒論】

人体に無害で非侵襲のテラヘルツ波(THz 波) は、分子の識別能力をも有する未開拓の電磁波で あり、医工学等の新分野への応用が期待されてい る。本プロジェクトでは、THz 波を用いた超高感 度・超高解像度のバイオイメージングシステムの 開発を目的とする。

本年度は、光ファイバ接続型で小型・省電力の 連続動作のテラヘルツ波光源である UTC-PD(Uni-Traveling Carrier Photodiode [1])を用いた THz 波計測応用としてファブリ・ペロー干渉計による THz 波長の計測を行い、THz イメージング(2次 元透過像計測)に成功した。また、高出力パルス 動作の TPO(THz-wave Parameteric Oscillator [2-5])についてもファブリ・ペロー干渉計による THz 波長の計測を行い、さらに THz 分光計測に も成功した。

【連続テラヘルツ波の波長計測・イメージング実 験】

UTC-PD から出力された微弱な THz 波を高感 度に測定するため、THz 検出器に簡便な常温パイ ロディテクタを用いたロックイン検出系を構成 した(図1)。励起光の波長制御による THz 周波 設定と実際の THz 波周波数との関係を調べるた め、高比抵抗 Si ウェハーを THz 波ミラーとする ファブリ・ペロー干渉計(図2)を製作し、 LabVIEW を用いた自動計測システムを構成して 波長計測を行った。

図3はTHz波周波数をPC上で0.2~0.4THzに

設定したときの測定結果であり、設定周波数と測 定周波数のよい一致を実験的に確認した。

図1 連続 THz 波光源 UTC-PD の光学実験系

図2 THz帯ファブリ・ペロー干渉計

図3 THz 波長の測定例

さらに本システムに2次元可動ステージを追加 して LabVIEW 制御を行い、参照試料(AgCl テスト パターン)を用いてTHzイメージング(2次元透過像) の実験を行った結果が図4である。回折理論から予 測されるように、THz 波周波数の上昇に伴って解像 度の向上が観測され、THz 波イメージングシステム の正常動作を確認した。以上により、UTC-PD を用 いた連続 THz 波による THz 波分光・イメージングシ ステムの基盤を確立した。

図 4 種々の周波数を用いた THz イメージング例 (a) 0.2 THz (b) 0.3 THz

【テラヘルツ波パルスの波長計測と分光実験】 一方、昨年度までに高輝度なナノ秒 THz 波パ ルスが得られた TPO (図 5) についても、THz 波 計測の光学実験を進めた。まず TPO から出力さ れた THz 波の波長を計測するため、ファブリ・ ペロー干渉計 (図 2) を用いた。その際、LabVIEW 自動計測システムにおいては、上記の連続 THz 波計測用から THz 波パルス計測用に変更したプ ログラム作成し、波長計測を行った。

図5 パルス動作 TPO の光学実験系

励起レーザ光の入射角 1.5°において得られた 測定結果が図 6 であり、THz 波長 204µm (1.47THz)を計測した。これより角度同調特性 が位相整合条件と良く一致することが確められ、 TPO の周波数掃引動作が高精度に行われている ことを確認した。

これに基づき、TPO を THz 分光計測に応用し た例が図 7 である。THz 波用光学フィルタ材料で あるブラックポリプロピレンと紙を試料とする 透過測定により、1.4~1.8THz 領域の透過スペク トルを得た。以上により、THz 波分光計測での正常 動作を確認し、パルス動作 THz 光源である TPO を 用いた THz 波分光システムの基盤を確立した。

【結論】

本年度は、連続 THz 波光源である UTC-PD を 用いた THz 波長計測・イメージングの応用研究 を進め、基盤システムの構築に成功した。また、 パルス動作 THz 波光源である TPO においても THz 波波長計測と THz 分光計測の応用研究を勧 め、基盤システムの構築に成功した。これらの成 果に基づき、今後は THz 波分光・イメージング システムを生体計測に向けて発展させていく予 定である。具体的には、連続 THz 波計測システ ムについては、高速変調制御による測定高速化を めざす。またパルス動作 THz 波計測システムに ついては、高速周波数可変動作・高出力特性を生 かした THz 断層画像計測を視野に入れ、生体計 測に不可欠な反射光学系への発展をめざす。

参考文献

- T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, Jpn. J. Appl. Phys. 36, 6263(1997).
- [2] J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, IEEE Trans. Microwave Theory Tech. 48, 653 (2000).
- [3] H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, J. Infrared, Millimeter, and Terahertz Waves 35, 25 (2013).
- [4] S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, Scientific Reports 4, 5045 (2014).
- [5] Y. Takida, J. Shikata, K. Nawata, Y. Tokizane, Z. Han, M. Koyama, T. Notake, S. Hayashi, and H. Minamide, Phys. Rev. A 93, 043836 (2016).