Active aging を支援する人に優しい診断治療機器の開発 ー生体計測用テラヘルツ波分光イメージングシステムの開発-

四方 潤一 日大工・電気電子

【緒論】

光波・マイクロ波の中間周波数帯にあるテラヘ ルツ波(THz 波)は、最近注目を集めつつある未 開拓の電磁波である。THz 波は、生体に無害な低 エネルギーの電磁波であるが、生体分子の識別能 力をもち、特異な物質透過性をも有する。近年、 THz 波を用いた DNA や癌組織等のラベルフリー 検出等[1,2]の応用研究が報告され始めている。

我々は THz 波技術研究の黎明期より、レーザ・ フォトニクス技術を用いた THz 波発生・検出と その制御に関する研究開発を行ってきた[3-7]。本 プロジェクトでは人に優しい THz 波技術の医工 学応用を目的として、先端のテラヘルツ光学と高 度なエレクトロニクスを融合し、生体分光・イメ ージング機能を備えた小型・高性能の新しい診断 治療機器の研究開発に挑む。

初年度である本年度は、顕微鏡・内視鏡応用に も適したフレキシブルな光ファイバ接続型で小 型・省電力の連続 THz 波光源である UTC-PD(Uni-Traveling Carrier Photodiode [8])に着目し、発 生した THz 波の高感度検出を検討した。その結 果、0.1~1.5THz 領域のテラヘルツ波発生・検出 に成功し、THz 波イメージングの第一歩となる THz 波ビームプロファイルの計測に成功した。ま た、高輝度のパルス動作 THz 波光源については、 従来の THz 波出力制約の要因を解明し、テーブ ルトップ型 THz 波光源で世界最高レベルの THz 波出力(ピーク出力> 50kW)に成功した [9-11]。

【連続テラヘルツ波発生の光学実験系】

図1に本研究で用いた THz 波光源と光学実験 系の概要を示す。励起光源である UTC-PD ドラ イバは、1.5µm 帯で広帯域に波長可変な DFB LD#1 (12ch の集積型 DFB 半導体レーザ)と波 長固定の半導体レーザ DFB LD#2 を内蔵してい る。これらの 1.5µm 帯レーザ光を合波し、光増幅 器(EDFA)を通して増幅し、高出力の 1.5µm 帯 2 波長光を得る。これを UTC-PD に入力すると、 2 波長光の差周波の周波数成分をもつ連続 THz 波が発生する。

本年度は、小型簡便な常温動作の焦電型検出器 を用いて微弱な連続 THz 波を高感度に検出する ため、熱雑音の少ない電子的な強度変調を用いて THz 波のロックイン検出を行った(図 1)。その 際、可変減衰器(VOA)に外部変調信号を入力 して強度変調された 2 波長光を UTC-PD に入力 し、THz 波に強度変調を与えた。また、UTC-PD からの THz 波出力に混じる 1.5µm 帯 2 波長光を カットするため光学フィルタを挿入し、THz 波成 分をレンズ集光して焦電型検出器に入射した。

図1 連続 THz 波光源と光学実験系

【1.5µm 帯 2 波長励起光源の動作特性】

まず励起光源である UTC-PD ドライバの光出 力特性を調べた。図2は光スペクトラムアナライ ザを用いて1.5µm帯2波長光のスペクトルを測定 したものであり、所望の周波数間隔 0.1~2THz の掃引を確認した。また、外部変調信号(0~1V の矩形波)を入力した際の時間波形を InGaAs フ オトダイオードにより観測した結果が図3 であ る。これより消光比約-17dB が得られ、所望の光 変調動作を確認した。

図3 1.5µm 帯 2 波長励起光の強度変調

【UTC-PD の動作特性】

強度変調した 1.5µm 帯 2 波長光の入力に対する THz 波(0.3THz)の出力特性を図 4 に示す。光入 力を増加させると THz 波出力は光パワーの 2 乗 に近い増加を示し、光入力が 10mW を超えると THz 波出力が飽和し始めることが分かった。そこ で光入力を 12.5mW に固定し、THz 波の周波数 (=2 波長光の周波数間隔)を掃引した際の THz
 波出力を図 5 に示す。これより、0.1~1.5THz の
 周波数領域において THz 波の検出に成功した。
 その際、UTC-PD からの THz 波出力は、0.3THz
 付近において最大出力となることが分かった。

さらに、THz 波イメージングの第一歩として、 ナイフエッジ法による THz 波ビームプロファイ ルの自動計測を行った。実験では UTC-PD から 出力される THz 波ビームの光軸に垂直にナイフ エッジを設置し、その位置を1軸ステージで制御 しつつ、ロックインアンプの出力を測定した。そ こで得られた THz 波の積分強度を空間微分して 得たビームプロファイルの例 (伝搬距離 100mm における横方向の THz 波強度分布) が図 6 であ る。これより、基礎となる 1 次元 THz 波イメー

図6 THz 波のビームプロファイル測定例

【パルス動作テラヘルツ波光源の高出力化】 一方、これまでから研究を進めてきたパルスレ ーザ励起の THz 光源である THz 波パラメトリッ ク発生器(TPG)[3-7]は、パルス動作ながら高輝 度な THz 波を出力するため、THz カメラ等を用 いて高速なシングルショット THz イメージング に適している。そこで本年度は、この TPG の高 出力化についても検討した。

まず、これまで用いてきたナノ秒パルス動作の Nd:YAG レーザ (パルス幅 10~25ns) にて非線形 光学結晶 (LiNbO3 もしくは MgO:LiNbO3) をこ れまで用いてきたパワーレベル (ピーク出力 1MW 程度) で励起すると、結晶内にブリルアン 散乱を励起を引き起こし、レーザ光が逆戻りして THz 波出力を制約することを見出した[9-11]。

そこで、ブリルアン散乱の問題の解決法として、 結晶内の音響フォノン寿命(約 1.5ns)より短い パルス幅の励起レーザ(Nd:YAGマイクロチップ レーザ、パルス幅 420ps)を使用し、光注入型の 光学実験系(図 7)にて THz 波の出力特性を検討 した。その結果、従来の 1~100W(ピークパワ ー)程度の THz 波出力から飛躍的な出力向上が 観測され、図8に示すように最大で 50kW(ピー クパワー)以上を達成し、0.7~3THzの広帯域な 周波数可変域が得られた[9-11]。この TPG システ ムはテーブルトップの小型 THz 波光源ながら、 大規模施設である自由電子レーザ(ピーク出力~ 2kW)をも凌駕する世界最高レベルの THz 波出 力が得られた。

図7 パルス動作 TPG の光学実験系

図8 THz 波出力の周波数特性

【結論】

本年度は、常温検出器を用いて小型・省電力の UTC-PD からの連続 THz 波の検出に成功し、THz 波のビームプロファイル測定を行った。また、パ ルス動作 THz 波光源の大幅な出力向上を達成し た。今後、本光源を用いて小型・移動可能な THz 波分光・イメージングシステムの構築を行い、生 体材料等への応用展開をめざす。

参考文献

 M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).

- [2] P. Knobloch, C. Schildknecht, T. Kleine-Ostmann,
 M. Koch, S. Hoffmann, M. Hofmann, E. Rehberg,
 M. Sperlings, K. Donhuijsen, G. Hein, and K
 Pierz, Phys. Med. Biol. 47, 3875 (2002).
- [3] J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, Opt. Lett. 24, 202 (1999).
- [4] J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, IEEE Trans. Microwave Theory Tech. 48, 653 (2000).
- [5] J. Shikata, K. Kawase, and H. Ito, Electron. Commun. Jpn.: Part 2 86, 52 (2003).
- [6] K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, H. Ito, Appl. Phys. Lett. 89, 201120 (2006).
- [7] H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, J. Infrared, Millimeter, and Terahertz Waves 35, 25 (2013).
- [8] T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, Jpn. J. Appl. Phys. 36, 6263(1997).
- [9] S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, Scientific Reports 4, 5045 (2014).
- [10] 四方潤一,平成 26 年度応用物理学会テラヘ ルツ電磁波技術研究会若手研究者サマース クール(招待講演),木更津(2014).
- [11] 四方潤一, IEEE MTT-S Kansai Chapter ワーク ショップ(招待講演),豊中(2014).