## 1. 緒論

本研究において対象とする変形性膝関節症(以下, 膝 OA と略記;Osteoarthritis)は、加齢、肥満、遺伝的 因子,および力学的負荷など多くの要因が関与して 発症する多因子疾患である.特に力学的負荷は、加 齢に伴い関節軟骨の変性および破壊に関与し<sup>1)</sup>,進 展すると時には痛みも伴って歩行障害が起きる.ま た進行性の疾患でもあり治療による完治が望めない ため、予防医療の考えから疾患の発症や進行を早期 に診断し、膝 OA の進行を遅延する方法が求められ ている. そこで本研究では、中高齢者の膝 OA 診断 を目指した膝 OA 計測診断システム構築の研究を進 めている<sup>2)-4)</sup>. 膝 OA の進行過程において軟骨劣化 に伴う硬化、損傷による凹凸の発生が可動時のメカ ニカルな発信の要因と仮定し、この強さと軟骨損傷 度の相関が分かれば膝 OA の進行度が推定でき、診 断に活かせると考えている。なお、発信とは主に信 号固有の時系列周波数特性を意味する.

本報では次の3点について報告する.1つ目は健 常膝,スポーツ膝,および膝OA膝が屈伸した際の 発信に特徴が表れるのか試験した.次に,膝関節屈 伸可動時に発した強い信号の繰り返しを確認するた めには,屈伸の終始とその可動域角度を知る必要か ら角度計の性能試験を行った.3点目は発信形態が 摺動面の凹凸形態と相関するものと想定しており, 人工的な凹凸形態と発信の形態を比較した.

### 2. 健常膝, スポーツ膝, および膝 0A 膝の発信

軟骨損傷度合の序列を健常膝,スポーツ膝,およ び膝 OA 膝と想定し,発信もこれと相関すると想定 した試験である.

2.1 試験方法 過去に継続的なスポーツ履歴を 有しない 22 歳男性の膝関節を健常膝,スポーツ歴 が長い 22 歳男性の膝関節をスポーツ膝,そして通 院している 84 歳男性の膝関節を膝 OA 膝と呼び, 各被験者の協力により信号を計測した.信号計測に は骨関節音響センサ<sup>5</sup>(以下,BJAS と略記;Bone-Joint Acoustic Sensor)を用いる.膝関節の屈伸は,負荷を 与えない座位姿勢での自動屈伸と負荷を与える座位 から立位への荷重屈伸である.計測部位は,膝蓋骨,

# 長尾 光雄<sup>1)</sup>, 横田 理<sup>1)</sup>, (Kim Youngho<sup>2)</sup>)

<sup>1)</sup>日大工·機械, (<sup>2)</sup>Yonsei Univ.Bio.Eng)

脛骨上端外側,および内側の3カ所とした.解析周 波数は0~20[kHz]の範囲と,これを7分割した周波 数範囲で実施した.

2.2 信号の数値化 屈伸1往復の信号を数値化 <sup>9</sup>した事例を図1に示す.2.4~4.5[kHz],横軸に時 間 t[s],左縦軸にパワースペクトル S[dBV],右縦 軸にイベント数 N[count]を示す.数値化には,信 号(青線)の休止域を外した「しきい値」(赤線)を設 け,これを超えた信号のイベント数を累積(以下, N値と略記)している.その総数の大小が発信強度 と相関すると考え,摺動面抵抗や凹凸形態と関係し ているものと予測している.この例のN値は点線 で示され,総数は326となった.しきい値 TH は, 休止域信号の平均値 Avg.と標準偏差 SD から TH~Avg.+  $\alpha$ SD ( $\alpha$ =2~5)として与えた.



2.3 周波数範囲 0~20[kHz]の数値化 図2は3 往復した信号を周波数(以下,f値と略記)0~20[kHz] のN値を平均したもので,横軸には3形態の左膝-脛骨上端内外側,縦軸にイベント数N[count]を示す. 3形態に共通する点は荷重屈伸のN値は自動屈伸の N値より大きく,膝OA膝の内外側のN値は他の2 形態のN値より大きく,自動では3.0=108/36,荷重 では4.5=361/108の差異が認められる.これに比べ て他の2形態にはN値が小さく差異の特徴はない.

2.4 周波数範囲を分割した数値化 3 形態の摺 動面形態に差異があれば、これに応じた周波数の発 信が見込めると考えて、先のf値を図3の横軸に示 す7段階に分けたN値で比較した.図2に示す3形 態の判別が付かない脛骨上端内側のデータを対象と いてf値を分割したものが図3であり、上から健常 膝,スポーツ膝,および膝 OA 膝の順に並べた.図 中の破線の囲いは,N値が大きいf値の範囲である. 3 形態の差異を N 値の大小とf値から比較する.健 常膝は 0.2~0.9kHz,スポーツ膝はこれに加えて 0.9~4.5kHz,膝 OA 膝はスポーツ膝のf値に加えて 4.5~10.0kHz で N 値が大きい.この事例から N 値が 大きいf値は,健常膝では 0.2~1.0kHz,スポーツ膝 は 0.2~4.5kHz,および膝 OA 膝は 0.2~10.0kHz の荷 重屈伸時に発信が大きいことから,摺動面の凹凸や 硬軟の形態が異なっているものと想定する.摺動面 形態の特徴を N 値で比較するには,f値の細分化と 負荷を与えることが有効である.



図2 左膝関節周波数範囲 0~20[kHz]のN 値



#### 3. 膝関節角度計測用角度計の試験

膝関節屈伸の終始とその可動域角度を正確に知る 必要性から角度計の試作を進めていたが、市販のゴ ニオメーターと同様に有線のため、被験者と験者へ の負担の軽減が課題になった.臨床試験では無線化 による操作が簡素な角度計が望まれており、臨床で 使われている無線式角度計2台の精度を検証した.

3.1 試験装置と方法 検証の基準とした角度計 はポテンションメータ(以下,角度計Aと略記)であ り、測定精度は試験の結果から最大指示値 340[deg]±0.60[deg](±0.18%)であった. 対象の角度計 は図4に示す3軸ジャイロ無線式角度計7(以下,角 度計Bと略記)である.膝関節の可動域中心軸<sup>8</sup>は一 定ではなく,角度の繰り返しによる再現が困難であ るため,角度計Aを回転中心軸とした幾何学的な下 肢関節モデルを製作した.図 5(a)は荷重屈伸の幾何 モデルで(b)がこれを実現した角度計 A と角度計 B を付ける下肢モデルである.角度計Bを検証する許 容値は次のように定めた. 膝関節の屈伸動作は約 6 [s]で110[deg]可動する. 可動角度 θ4 では角度計 Aの 指示値の±1 [%]とした±1.1 [deg]以内,終始の再現性 は初めの動き出し角度 0=0 [deg]を基準として往復繰 り返しごとの動き出し角度 $\theta$ との差を $\theta_{rep}$ とし,角 度計 A と同じ±1.1 [deg]とした. 次に角度計 A の終 始時間との差を $\Delta t_s$ ,  $\Delta t_e$ として, それぞれ±0.2[s]以 内とした.これらの許容要件において,角度計Bの 測定精度,再現性,および時間差を検証した.

3.2 角度計 A を用いた荷重屈伸試験 紙面の都 合で自動屈伸検証試験の詳細は省略するが,結果は 荷重屈伸に併記する.図 5(a)には大腿骨部  $\ell_1$ =483 [mm],脛骨部  $\ell_2$ =415 [mm],および足部  $\ell_3$ =83[mm] とした.臨床の荷重屈伸では,角度計 A の値を基準 に足部を内側に  $\theta_1$ =20[deg]引き込み,足部を床面に 置くため,膝関節の位置が角度  $\theta_2$ 相当分下がる.試 験では(b)に示す  $\theta_2$ =0[deg]とした.この姿勢を試験開 始位置とし、 $\ell_1$ を角度  $\theta_3$ 持ち上げると  $\ell_2$ が連動し



θ<sub>1</sub>が可動する.この動作を5往復の3回程繰り返す. 角度計Aと角度計Bの角度θ<sub>4</sub>は,次の関係になる.

・角度計A; θ<sub>4</sub>, (θ<sub>4</sub>は角度計A<sub>2</sub>で測定)

・角度計 B; θ<sub>4</sub>=θ<sub>1</sub>+θ<sub>3</sub>(θ<sub>1</sub>-角度計 B<sub>1</sub>, θ<sub>3</sub>-角度計 B<sub>2</sub>) 角度計 Bの試験は, 脛骨前面と脛骨外側面に取り付 け, 測定軸方向の差異も検証した.

3.3 荷重屈伸検証試験結果 角度計 A に対する 角度計 Bの脛骨前面と脛骨外側面の結果を図6と図 7 に示す. 縦軸に角度 θ4[deg], 横軸に時間 t[s]を表 し,角度計 A(青太線)の1 往復の時間間隔は信号の 動き始めと動き終わりを基準とした.次に評価項目 の結果は平均値であり、表1に $\Delta \theta_4$ と $\theta_{rap}$ 、表2に $\Delta t$ を示す. これらより, 脛骨前面の Δθ4=-10.5[deg], 脛 骨外側面の  $\Delta \theta_4$ = -6.0[deg], 同じく  $\theta_{rep}$  は 14.0[deg]と 3.8[deg]となり、両方の許容値 ±1.1[deg]を満足しな かった. 次に時間差  $\Delta t_s$  と  $\Delta t_e$  も平均値であり, 脛骨 前面で-2.1[s]と-2.4[s], 脛骨外側面では, 0.3[s]と-0.7 [s]となり,許容値 ±0.2[s]を満足しなかった.ここで 自動屈伸の場合,可動角度 Δθ2 は脛骨前面で -2.6 [deg], 脛骨外側面では -2.2[deg], 同じく再現性 θ<sub>rep</sub> は0.7[deg]と0.8[deg]となる. 両方の許容値は±1.2



図7 脛骨外側面位置の可動角度

| 衣I 月度の側止相度と円先性の計1 | 表 1 | そ1 角度の測定精度と再現性の評価 |
|-------------------|-----|-------------------|
|-------------------|-----|-------------------|

| 各取り付け位置の評価 (許容値:1.1[deg]) |                 |             |                               |            |  |  |  |
|---------------------------|-----------------|-------------|-------------------------------|------------|--|--|--|
| <b>在</b> 由 礼              | 可動角度θ4 ave[deg] |             | 再現性θ <sub>rep ave</sub> [deg] |            |  |  |  |
| 月及司                       | 脛骨前面            | 脛骨外側面       | 脛骨前面                          | 脛骨外側面      |  |  |  |
| А                         | 108.5           | 108.8       | 0.3                           | 0.1        |  |  |  |
| В                         | 97.5            | 102.8       | <u>14.0</u>                   | <u>3.8</u> |  |  |  |
| 差Δθ₄=B-A                  | <u>-10.5</u>    | <u>-6.0</u> | -                             | -          |  |  |  |

表2 動き始めと動き終わりの時間差

| 角度計Bの動き始めと動き終わりの時間差 (許容値:0.2[s]) |             |            |  |  |  |  |
|----------------------------------|-------------|------------|--|--|--|--|
| 時間                               | 脛骨前面        | 脛骨外側面      |  |  |  |  |
| 動き始め 差 Δt <sub>s ave</sub> [s]   | <u>-2.1</u> | <u>0.3</u> |  |  |  |  |
| 動き終わり 差 Δte ave[s]               | -2.4        | -0.7       |  |  |  |  |

[deg]であり再現性 $\theta_{rep}$ は満足した.次に時間差 $\Delta t_s \& \Delta t_e$ も,脛骨前面で2.5[s]と2.7[s],脛骨外側面では, 1.6[s]と0.1[s]となり,許容値 ±0.2[s]を満足すること は困難である.これらの荷重屈伸試験と自動屈伸試 験の結果より,角度計Bは許容値の要件を満足して いないため,膝関節可動域測定には適していないこ とが分かった.

## 4. 人口的な凹凸形態摺動面と発信

BJAS は膝関節の軟骨等を含む摺動面形態に応じ た発信を捉えていると推定している.これを診断に 活用するのであれば,発信の位置やその摺動面形態 の実態は信号から想定される必要がある.そこで, 人工的に製作した凹凸表面を用いた試験を進めてお り, BJAS では 3~6mm の凹凸ピッチの位置や大き さの実態を計測している.ここでは,ピッチが 1mm 以下の凹凸が連続した場合の発信とピッチ,および 速度との関係について試験した.

4.1 試験装置と方法 摺動試験装置の概略図を 図8に示す. 往復移動テーブルに試験片を固定し, センサホルダーの一端はセンサホルダー支持台に固 定されており, BJAS と AM(1 軸加速度計, 以下, AM と略記)を取り付ける. AM は BJAS の対照群の 位置づけである.センサホルダー下部は接触子が取 り付けられており, 接触子の径 3/8inch, 硬度 HV1850 の硬質球体が取り付けられている. 接触子とセンサ ホルダーの質量 4.0[N]で負荷を与え, 摺動させたと きの信号を計測した. 往復移動条件は, 回数が4往 復, 設定摺動速度 25,50,および 67[mm/s],両セン サの信号はDSPに送りPCで信号処理と解析をする. 試験片は単目の鉄工やすりで荒目(p~0.769mm),中目 (p~0.588mm),および細目(p~0.370mm)の3種類を用 いた. 図9には、球体がやすりの凹凸ピッチ上を摺 動した際の上下方向変位 x を幾何学的に求めており, それぞれ 0.016, 0.009, および 0.004[mm]となる. 図 10は、荒目のやすりで速度が25[mm/s]のタイムトレ ンド信号であり,縦軸がスペクトルレベル S[dB],横 軸が時間 t[s]になっている.





4.2 試験結果 速度と信号の強さの関係について、最小値 S<sub>0</sub> との S/S<sub>0</sub>, v<sub>0</sub>=25[mm/s]の v/v<sub>0</sub>の比で表しBJAS と AM を図 11 と図 12 に示す. 信号の強さS は図 10 の往復路時間の信号を往復回数から平均している. v/v<sub>0</sub> と S/S<sub>0</sub>の関係を荒目やすりの実験式(図中破線)で示せば、その傾きが BJAS では 1.98,

対して AM は 0.15 となり, 速度の変化に対する感度 は BJAS が約13 倍となり優位である. 次に, 上下の 加速度と信号振幅の関係については、最小値のA<sub>0</sub>と SD<sub>0</sub>との比で A/A<sub>0</sub>, SD/SD<sub>0</sub>で表し, BJAS と AM を 図 13 と図 14 に示す. 信号振幅の大きさは,標準偏 差 SD で示している. 図 10 に示す SD は往復路時間 内の振幅 SD 内で求めた. A/A<sub>0</sub> と SD/SD<sub>0</sub>の関係に は相関性があり,荒目の変位は細目の約4倍,中目 の約2倍程度大きいため, SD にもその違いが表れ ている.細目やすりの実験式(図中破線)で示せば、 その傾きが BJAS では 0.29, AM は 0.13 となり, 加 速度の変化に対する感度は BJAS が約2倍となり優 位である. ピッチが 1mm 以下の凹凸が連続した試 験片からの感度について、対照群に AM を用いた BJAS では, 速度変化の感度が約13倍, 加速度のSD では約2倍程度,BJAS が優位であった.

### 5. 結論

本報では3点の進捗について報告した.これまで に分かった要点と今後について示す.

(1) 健常膝,スポーツ膝,および膝 OA 膝が屈伸し た際の3形態をイベント数の大小で特徴づけるには, 適正な周波数の分割と適正なしきい値を与えること により,実現可能である.今後は,しきい値の与え 方,分割数の適正化,およびこれらの効果の有無を



確認するために、生活環境が異なる被験者の事例を 増やす。

(2) 臨床現場で使われる無線式角度計 2 個を下肢 関節モデルで試験したが,設定した許容値を超える 誤差となり,対象とした角度計は本試験条件には適 さないことが分かった.今後は,許容値を満足する 仕様の無線式角度計を探し,適正を検証する.

(3) 1mm 以下の細かい凹凸ピッチを有する3 種類 のヤスリ面に球体接触子を押し付けて,速度と信号 の大きさ,およびピッチと上下変位からの加速度の 大きさには正の相関を認めた.今後は,介在物が摺 動面に介在した場合,介在物の大きさ,硬軟,およ び負荷の大きさ等が変化した条件に応じた,発信の 形態とこれを示せる解析方法も検討する.

## 文献

- 1) 木藤 他 7 名, 変形性膝関節症 理学療法診療ガイドラ イン, (2011), p.273.
- 日本大学:生体用音響センサ及び生体音響センサを用 いた診断システム,WO2011/096419.
- 3) 長尾,変形性膝関節症の予防診断支援システムを目指 した臨床病気分類の信号解析,第59回日本大学工学部学 術研究報告会 講演要旨集,(2016), p.17/20.
- 4) 長尾, 横田: 変形性膝関節症の早期予防を目指した診断 支援システム用センサの開発, 地域ケアリング, Vol.17, No.11, (2015), pp.50/54.
- 5) Nagao, Yokota et al., Frequency Response in Bone Joint Acoustic Sensor Development, Int. Jour. Tech. & Health Care, Vol.23, No.6, (2015), pp.715/727.
- 6) 長尾,横田,他2名:膝OA予防診断を目指したBJASの開発,第49回日本生体医工学会東北支部大会要旨集,(2015),p24.
- 7) 酒井医療機器, マルチセンサ θ 取扱説明書, pp. 16/17.
- 8) 中井, 動きの解剖学, 科学新聞社, (1995), pp.192/204.