膝 OA 早期診断支援システムの開発に関する 膝可動時の発信をキャッチするセンサの開発と性能評価 (加速度計を対照としたインパクト加振試験と擬似凹凸の摺動試験)

長尾 光雄¹⁾, 横田 理¹⁾, (紺野 愼一²⁾, キム ヨンホ³⁾) ¹⁾日大工・機械、(²⁾福島医大・整形、³⁾延世大・ハ^{*} けメカ)

1. 緒論

変形性膝関節症(KOA と略記; <u>Knee Osteoarthritis</u>) とは進行性の疾患であるため,痛みを感じ始めた頃 には症状が進行している.早期に KOA の診察がで きれば,QOL の維持や健康寿命の延伸に役立つもの と考えている.この KOA の進行と軟骨のすり減り や下骨摩滅の情報が診療に活かされている.そこで, どこでも簡単に膝関節表皮から非侵襲でこれらの情 報が計測できる骨関節音響センサ(BJAS と略記; Bone-Joint Acoustic Sensor)¹⁾を試作開発している.

これまで確認した性能試験は,硬軟から構成した 伝達系のインパクト加振試験,また軟骨下骨の表面 が摩滅して凹凸(おうとつ)状を想定した擬似試料よ り,位置情報の精度を調べた²⁾.これらの対照には 加速度計(AM と略記;<u>Accelerometer</u>)を用いた.

ここでは、これまでに分かった BJAS の信号応答 特性に関連した性能試験について報告する.

2. BJAS

BJAS の概要図と写真を Fig.1 に示す. 信号の計測 は接着面中央のプローブ先端が被験者の表皮に押し 付けられ,その反対側にはユニモルフ型変換素子を 配置した. Fig.1 は外径 26 mm,高さ 9.2 mm,質量 5.8 g の試作品である.

3. インパクト加振試験

3.1 概要 BJAS で計測した信号には, BJAS の 周波数応答特性が深く関わるため,これの調査は重 要である.この調査には Fig.2 に示す伝達系を構成 したインパクト加振試験により実施した.Fig.3 には Fig.2 の伝達系構成要素と記号を表す.入力信号 x(t)は硬質試験体 T_1 (SUS 系金属盤, \Box 150×t10 mm)の定 点にインパルスハンマにより与える加振力(記号; A) である. この入力信号は T₁および軟質試験体 T₂(豚 足表皮,□35×t3~4 mm)を伝播して,加速度計(1 軸型, 記号; B)と BJAS(記号; C)に伝播する. これを出力信 号 y(t)として計測する.

3.2 対照と応答関数 C の周波数応答特性は B を対照として、その類似度から検討する. 伝達系の 構成は Fig.3 から A-T₁系と A-T₁-T₂系であり、これ らの入出力信号の特性はクロススペクトル密度関数 $P_{xy}(f)$,周波数応答関数 $H_{xy}(f)$,およびコヒーレンス 関数 $y_{xy}^{2}(f)$ にて類似度を検討した.

Fig.3 Components of the signal transmission and measuring system.

3.3 結果と類似度の検討

(1) A-T₁伝達系の類似度 Fig.4 左縦軸は x(t)のパ ワースペクトル $P_{AA}(f)$, A-T₁-B系とA-T₁-C系の $H_{xy}(f)$, および右縦軸には各系の $\gamma_{xy}^2(f)$ を現す. $f_1=2148$ Hz (矢 印)は系の1次の共振周波数である. $H_{xy}(f)$ の破線「0」 より「プラス側」は出力信号が大きく、「マイナス側」 は出力が小さいことを表している. $P_{AA}(f)$ が減衰して いる(破線丸印)横軸fに応じて $H_{xy}(f)$ も減衰しており 入出力の相関は強いが, A-T₁-C系ではf>7 kHz の減 衰が大きい.また, A-T₁-C系の $\gamma_{AC}^2(f)$ T₁ではf<1.5 kHz (網掛け)と 11~12 kHz でも相関が悪い.

(2) A-T₂ 伝達系の類似度 Fig.5 の両縦軸は先の Fig.4 と同じであり, 豚表皮 T₂ が追加された A-T₁-T₂-B 系とA-T₁-T₂-C 系である. H_{xy}(f)は Fig.4 と 比べて「マイナス側」にシフトしており,特に A-T₁-T₂-C系の $H_{AC}(f)_{T_{24}}$ ではf > 6kHzの応答感度が悪 いため, $\gamma_{AC}^2(f)_{T_{24}}$ も悪い. これらより BJAS の周波数 応答特性は対照とした AM と比べて劣る. この伝達 系 T₂は,高周波数領域の信号振幅を減衰させること が分かる.

Fig.4 Similarity ratio of B and C in transduction system $A \rightarrow T_1$.

4. 膝関節屈伸試験

4.1 概要 試験に同意を得た被験者 6 名の AM と BJAS の結果には大差がないため,その代表例を示す. 被験者は年齢 22 歳,男性,身長 186 cm,体重 60 kg(BMI;17.0),痩せ形で継続した運動歴はない. 計測は右脛骨外側顆約 1 cm 下方辺りの比較的平らな所に B と C を接着し,さらに屈伸角度は大腿骨と脛骨側面にゴニオメーターを付けて計測した. Fig.6 は座位からの自動と荷重屈伸の写真である. 屈伸角度はそれぞれ 90 deg と 103 deg,屈伸回数は 4 回,各動作間には約 2 秒の静止時間を設定した. ここでも対照は AM として BJAS の優位性を調べた.

4.2 屈伸の信号 Fig.7 には自動屈伸(Fig.6 (a)) 4 回繰返した時間軸の AM と BJAS の信号振幅 Y と角 度 θ (右縦軸上部)を表す. 初めの網掛け部分は静止時を強調するために付した. AM の 2 本の破線は静止時で 15 nm/s², 可動時ではこれが 2 倍の 30 nm/s² になった線である. BJAS では静止時の信号は確認 できないが可動時の発信は明瞭に表れている.

これらの短時間フーリエ変換(STFT)したスペクト

Fig.6 Flexion-extension motion of right knee from the sitting positon.

ログラムを Fig.8 に示す. 横軸は時間 t, 左縦軸には 周波数 f で 0~14 kHz, その下方には屈伸角度 θ , 右 縦軸の P(f)は信号強度を表すカラーバーである. Fig.7 と合わせて見れば, AM の信号振幅は f<0.5 kHz が主であるのに対して, BJAS では伸展時に大きな 振幅が繰返されておりこれが図中矢印で示す屈曲動 作の所で表れ, 12 kHz まで到達している. 図中の 10 kHz は外部からのノイズ信号である.

4.3 信号の数値化 Fig.4 と Fig.5 を参照して AM と BJAS の優位性を確かめるために,次の数値化を 試みた. *f*を 0.5, 1.5, 3.5, および 8.0 kHz 近傍の信 号振幅(図(b)の左縦軸矢印)が,定常的(これを閾値と して)な振幅より大きい信号の数をカウントして,こ れらの数の大小で判別した. その結果が Fig.9 であ

る. AM の f が 0.5 kHz 近傍においてカウント数 25 であるがそれ以外は大きな信号がなく, BJAS では f ごとの数が多い. ここでは示していないが荷重屈伸では, Fig.7~Fig.9 の信号振幅は約 2 倍以上にはなるが, AM のカウント数は自動と同程度であるのに対して BJAS の数は 2~7 倍に増加していた. 荷重屈伸でも AM より BJAS は優位である.

ここで AM と BJAS の信号伝播機構について, Fig.7~Fig.9 から検討する. これらは表皮に接触する 形態の違いと推測する. AM はその平面部を接着す るため表皮の振動とは相関が高く,静止時でも膝関 節の微動に反応するが,内部から伝播する信号には 反応していない. これに対して BJAS は尖った先端 を表皮に押込む機構のため,内部からの信号には AM より応答感度が優れていると考える.

Fig.9 Comparison of the number of the signal counts in Fig.8.

5. 凹凸信号の精度

5.1 試料の概要 Fig.9 でカウントした数が大腿 脛骨関節の摺動面の摩滅により凹凸が発生し,その 段差の大きさが関与すると推定した. Fig.10 はこれ を模擬的に現した試料である. これは,四角型の空 洞が付いた厚さ4 mm のプラスチック製の板(62 mm

と59 mm)を長手方向に貼り合わせた全長 121 mm で ある. 中央が板の厚さ方向の断面(上下の支えが縦 柱),上下には板の平面方向からの写真である. 摺動 する面の移動距離を ℓ =100 mm として,その範囲に 入る凸面として扱う縦柱の数は,左側から番号(図中 O印)を付して 1~22 存在する. 縦柱の間を凹面とし て,この面の弾性定数が「A(13 N/mm)>B(10 N/mm)」 のため,凹面を押付けた際の段差は「A<B」となる. 試験では,凸部間隔の寸法精度,段差の大小と信号 強度との関係性について,AMを対照に調べた.

Fig.10 Irregularity of the sample, and its position, photograph.

5.2 試験装置の概要 Fig.10 の試料上面を往復 摺動する装置が Fig.11 である. これの A 部詳細が Fig.12, 可動条件を Table1 に示す. 試料に乗せて摺 動させる凸部分の材料は POM, その寸法は半径 1 mm の円弧上で幅が 40 mm, 質量 W は約 3.6 N, AM と BJAS はその上部に接着, 摺動部の位置決め精度 は 0.01 mm, 往復回数は Fig.7 と同じ 4 往復である.

Fig.11 Component of the to-and-fro slide test equipment.

Fig.12 Details of the slide part and samples.

5.3 結果と検討 往復回数4往復の移動距離,速度,および荷重の計測値が Fig.13 である.解析例は 図中網掛けした2往復目の往路を対象として,AM とBJASの精度算出方法を具体的に示す.Fig.14と Fig.15は*ℓ*=100 mm を移動する時間*t*=0~2.28 sを切り 取った STFT のスペクトログラムである.上部は計 測した時系列信号振幅,下部は Fig.10 の断面写真を 配置する.発信は試料の凸(縦柱)ごと(白色丸印)

に強く、その数も 1~22 まで数えられる. 凹凸段差 の大小 A<B と信号強度の大小 A<B は相関すること も確認できる.発信時間 to の読み取りの明瞭さは BJAS が優位である.

次に,移動距離 l=100 mm を時間 t=2.28 s で摺動す るため, 凸部 22 ヶ所の発信時間 to が分かる. Fig.16 と Fig.17 は、 ℓ を関節角度 θ=90 deg に相当させて、 発信位置相当角度 θ(左縦軸), 横軸は to である. θ1(図 中〇印)は算出値,実測値 02 (図中〇印)はスペクトロ グラムから求め、その回帰直線も示す. これの差 $\Delta \theta = \theta_1 - \theta_2$ (右縦軸, 図中△印)とこれの回帰直線, およ び平均値 $\Delta \theta_{ave}$ も示す. AM と BJAS の $\Delta \theta_{ave}$ は, -2.7 deg と-1.0 deg であった. この差は、ステッピングモ ーターの動き始めと終わりに外部へ出力する信号の 応答時間が0.07秒実働より早く送信していたことが 分かり、これを補正した後の差 $\Delta \theta' = \theta_1' - \theta_2'(図中ロ)$ 印)とこれの回帰直線,および平均値 Δθ'ave.も示す. その結果から, AM は-2.7 deg から 0.5 deg, BJAS で は-1.0 deg から 1.7 deg になった. この中には, Fig.14 と Fig.15 に示す発信時間 toの目視精度も含まれてい る. Fig.13 の 2~4 往復すべての $\Delta \theta_{ave}$ と $\Delta \theta'_{ave}$ の絶対 値の平均値は, AM は 3.1 deg と 2.3 deg, BJAS では 2.3 deg と 1.4 deg であった.

なお, AM の Fig.8(a)屈伸では Fig.14 で見られる摺

動信号は計測されていない. これらより BJAS の感 度と周波数特性はAMと比べて優位である.

6. 結論

BJAS の信号応答特性について AM を対照とした 試験から次の点が示される.

(1) 膝関節屈伸時において, AM は 0.5 kHz 以下の信 号のため不安定さの計測には優位である. BJAS で は1.0~12.0 kHz の計測が優位なため、双方の特長が 活かせる計測方法を提案する.

(2) 摺動面の擬似凹凸分布から発信位置相当角度の 精度は, AM で±2.3 deg, BJAS では±1.4 deg であ る. 段差の大小による信号強度の大小には正の相関 を認めた.

(3) BJAS で計測した膝関節からの信号について,発 信源の特定とメカニズムについて解明する.

文献

- 日本大学:生体用音響センサ及び生体音響センサを 1) 用いた診断システム, WO2011/096419.
- 長尾,横田,他2名:骨関節音響センサ開発の基礎 2) 研究,日本機械学会東北支部第50期総会・講演会, (2015) No.2015-1, pp.165/166.
- Nagao, Yokota et al., Frequency Response in Bone Joint 3) Acoustic Sensor Development, Int. Jour. Tech. & Health Care, (2015 掲載予定)