令和6年度

数 学

注意事項

- 1. 試験開始の合図があるまで、問題冊子を開いてはいけません。
- 2. 試験時間は60分です。
- 3. 試験開始の合図があったら、問題用紙が1ページから9ページまで、順序正しくそろっているかどうかを確かめなさい。問題用紙に不備がある場合には着席のまま手をあげなさい。
- 4. **解答はすべてマーク式です**。氏名・フリガナ・受験番号・試験方式を、解答用紙の所定欄に 記入しなさい。受験番号は下の記入例に従ってマークしなさい。
- 5. 解答用紙の解答科目記入欄の中から「数学」を選んでマークしなさい。
- 6. 下の「解答用紙記入上の注意」を参照し、問題文中の に適する数字 $(1, 2, 3, \cdots, 0)$ 、文字 (π) 、符号 $(\pm, -)$ を 1 つ選び、「解答記入欄」にマークしなさい。ただし、文字 π は円周率を表します。
- 7. 分数は既約分数で表しなさい。
- 8. 根号√を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答えなさい。
- 9. 問題の内容についての質問には応じません。
- 10. 試験終了の合図があったら、解答をやめなさい。
- 11. 問題冊子は必ず持ち帰りなさい。

受験番号欄記入例

5	受 縣	食	≸ − ₹	클
万	千	百	+	
7	8	9	0	/
1)	1)	1)	1)	•
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4
(5)	(5)	5	(5)	(5)
6	6	6	6	6
•	7	7	7	7
8	•	8	8	8
9	9	•	9	9
0	0	0	•	0

解答用紙記入上の注意

(1) 解答は**HB**の黒鉛筆で、次のようにマークしなさい。ただし、各設問の解答欄に2つ以上マークした場合は無効とします。

例:解答が3の場合

- (2) 訂正するときには、消しゴムで完全に消して書き直し、消しクズが紙面に残らないようにしなさい。
- (3) 解答用紙を汚したり、折り曲げたりして はいけません。

数 学

1.

(1)
$$x=2+\sqrt{3}$$
, $y=2-\sqrt{3}$ とすると, $xy=\boxed{1}$, $\frac{x}{y}+\frac{y}{x}=\boxed{2}$ ③ である。

- (2) 2次関数 $y=-2x^2+4x+1$ のグラフの軸は直線 x=4 ,頂点は点(5 ,6) である。 関数 $f(x)=|-2x^2+4x+1|$ の $-1\leq x\leq 2$ における最大値は 7 ,最小値は 8 である。
- (3) $(\log_9 16 + \log_3 25) \log_{10} 3 =$ 9 である。
- (4) 1から100までの自然数が1つずつ書かれた100枚のカードがある。このカードの中から1枚を取り出すとき、そのカードに書かれた数が6の倍数または8の倍数である確率は
 10
 である。
- (5) $\triangle ABC$ において、 $AB = \sqrt{2}$ 、 $BC = \sqrt{3} 1$ 、 $\angle ABC = 135^{\circ}$ とする。このとき、 $AC = \boxed{13}$ 、 $\angle BCA = \boxed{14}$ $\boxed{15}$ $^{\circ}$ である。

- 2. 座標平面上の2点A(6,0),B(0,8)について,
 - (1) 2点 A,B を通る直線の傾きは 16 である。
 - (2) 線分 AB の垂直二等分線の方程式は $y = \frac{ 18 }{ 19 } x + \frac{ 20 }{ 21 }$ である。
 - (3) 2点 A,B を通り,中心の x座標が -1 である円を C とすると,円 C の方程式は $(x + 22)^2 + (y 23)^2 = 24$ 25 である。

- 3. $f(x) = x^2 1$, $g(x) = 2x^3 3x$ とし, $\alpha = \cos \frac{\pi}{12}$ とする。以下, 2 倍角の公式 $\cos 2\theta = 2\cos^2 \theta 1$ および, 3 倍角の公式 $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$ を用いてよい。
 - (1) $f(\sqrt{2}\alpha) = \frac{\sqrt{26}}{2}$ である。
 - (2) $g(\sqrt{2}\alpha) = 27$ である。
 - (3) x についての整式 $g(x)-g(\sqrt{2}\alpha)$ を $f(x)-f(\sqrt{2}\alpha)$ で割ったときの余りを r(x) とする。 r(x)=0 を満たす x の値は $\frac{ 28 + \sqrt{29}}{2}$ である。

4. $\triangle ABC$ と点 P があり、 $2\overrightarrow{AP} + 2\overrightarrow{BP} + \overrightarrow{CP} = \vec{0}$ が成り立っている。また、直線 AP と直線 BC が交わる点を Q とする。このとき、

(1)
$$\overrightarrow{AP} = \frac{ \boxed{ 30 \ \overrightarrow{AB} + \overrightarrow{AC} } }{ \boxed{ 31 \ } }$$
 である。

$$(2)$$
 $\frac{\mathrm{BQ}}{\mathrm{QC}} = \frac{\boxed{\mathbf{32}}}{\boxed{\mathbf{33}}}$ である。

(3) \triangle APC の面積を S_1 , \triangle BPQ の面積を S_2 とすると, $\frac{S_2}{S_1} = \frac{34}{35}$ である。

5. 次のように定められた数列 $\{a_n\}$ と数列 $\{r_n\}$ を考える。 $a_1=1$ とする。 $n=1,2,3,\cdots$ について,1 辺の長さが a_n の正三角形の外接円の半径を r_n とし,半径が r_n の円を内接円にもつ正三角形の1 辺の長さを a_{n+1} とする。このとき,

$$(1)$$
 $r_1=rac{1}{\sqrt{igcap 36}}$, $a_2=igcap 37$ である。

(2)
$$a_{n+1} = 38 a_n \ \text{cbs}_0$$

(3) 半径が
$$r_n$$
の円の面積を S_n とすると、 $\sum_{k=1}^n S_k = \frac{\boxed{39}^n - \boxed{40}}{\boxed{41}} \pi$ が成り立つ。

- 6. 2つの関数 f(x) = x + 2, $g(x) = x^2 2x 2$ について,
 - (1) y = f(x) のグラフと y = g(x) のグラフの交点の座標は (-42], 43) と (44], 45) である。
 - (2) 区間 $0 \le x \le 3$ において、y = f(x) と y = g(x) のグラフおよび 2 直線 x = 0、x = 3 で囲まれた図形の面積は 2 である。
 - (3) $h(x) = \int_0^x \{f(t) g(t)\} dt$ で定められた関数 h(x) の区間 $-3 \le x \le 3$ における最小値は 48 49 50 である。