業績書(教育職員免許法施行規則第22条の6号関係)

氏 名	近藤 康雄	学	位	博士 (工学)
担当授業科目	確率•	統計	工科系	数学Ⅱ

1 経歴, 学会及び社会における活動等

(1) 経歴

鳥取大学大学院工学研究科准教授1998 年 2 月~2011 年 2 月山形大学大学院理工学研究科教授2011 年 3 月~現在に至る

(2) 所属学会

日本機械学会 精密工学会 先端加工学会 データサイエンス協会

(3) 学会・社会活動

日本機械学会設計工学・システム部門運営委員 2004 年度~2005 年度

精密工学会校閱委員 2005 年度~

精密工学会中国四国支部商議員 2006 年度~2011 年度

 日本機械学会校閲委員
 2007 年度~

 精密工学会東北支部商議員
 2011 年度~

(4) 受賞歴

日本原子力学会技術賞日本原子力学会1994 年 3 月発明協会会長奨励賞鳥取県発明くふう展2002 年 11 月日本工学教育協会業績賞日本工学教育協会2004 年 8 月ICMPT Best Paper Award精密工学会2006 年 12 月AMRMT2016 Best Presentation KSME2016 年 8 月

2 著 書

著 書 名	単著・共著の別	発 行 所 名	刊行年月日	備考
1. 腐食と対策事例集	共著	丸善	1987年3月	
2. 科学って何!	共著	鳥取大学	2007年3月	

3 学術論文等

学術論文等の名称	単独・共同の別	発表雜誌等名	発行年月日	備	考
1. A Damage-Free Machining	共同	Int. J. of Automation	2016年3月		
Method for CFRP Without		Technology			
Feedback Control Systems					

2.Influence of the Brittle Behavior of Work Materials on Microgrooving	共同	Key Eng. Materials	2016年8月
3. Evaluation of the Thermal Shock Fatigue Resistance of Cutting Tools Using CO2 Pulse Laser Beam	共同	Key Eng. Materials	2016年11月
4. A Utilization Method of Big Sensor Data to Detect Tool Anomaly in Machining Process	共同	Advanced Materials Research	2016年11月
5. The Wear Characteristics of a Wire Tool in the Microgrooving of Ceramics	共同	Key Eng. Materials	2016年11月
6. Property and Recyclability Change of Corrosion Inhibition Improved Amine Ffree Water-soluble Cutting Fluids with Repeated Recycling	共同	Key Eng. Materials	2017年9月
7. Fundamental Characteristics of Grooving Aiming at Reduction of Kerf-Loss Using an Ultrafine wire Tool	共同	Materials Science and Engineering	2017年9月
8. Influence of the Brittle Behavior of Work Materials on Polishing Characteristics	共同	Materials Science and Engineering	2017年9月
9. Feature Extraction from Sensor Data Strems for Optimizing Grinding Condition	共同	Materials Science and Engineering	2017年9月

10 Influence of the	#13	MATEC Walace	2010年10日
10. Influence of the Characteristics of a Workpiece on the Slicing Characteristics Including Tool Wear	共同	MATEC Web of Conference	2018年10月
11. Extremely Thin Metal Foil Blades as Cutting Tools for Hard and Brittle Materials	共同	MATEC Web of Conference	2018年10月
12. Prediction Model of Power Consumption for Variable Material Removal Rate Machining Process	共同	Int. J. of Materials, Mechanics and Manufacturing	2019年4月
13. Decorative Film Formation by inkjet printing with Gold Nanoparticles for Synthetic Resin Crafts	共同	Key Engineering Materials	2019年10月
14. 工作技能の継承に向けたノウハウのデジタル化	単著	技能と技術	2019年12月
15. 水溶性加工液の予知保 全	単著	潤滑経済	2020年3月
16. A Study on Cyber-physical System Architecture to Predict Cutting Tool Condition in Machining	共同	Int. J. of Mechanical Engineering and Robotics Research	2020年4月
17. Sliced Surface Generation Mechanism of Unidirectional Glass Fiber- Reinforced Plastic by Multi-Wire Sawing	共同	Int. J. of Mechanical Engineering and Robotics Research	2020年6月
18. カーボンスカムの蓄積と水溶性加工液の液性	単著	月刊トライボロジー	2020年7月

19. 切断加工におけるア行者	単著	技能と技術	2020年7月	
特性のデジタル化				
20. 水溶性加工液中での流動	単著	潤滑経済	2020年9月	
特性を考慮した浮遊スラ				
ッジ回収法の提案				

4 学会発表等

発表課題の名称 単独・共同の別 発表学会等の名称 発表年月日 備 考 1. A Supervisory System in Machining Process Leading to the Energy Saving 2. Effect of Cutting Force Control on Cutting Characteristics of CFRP in ※表学会等の名称 発表年月日 備 考 ICMDT2013
Machining Process Leading to the Energy Saving 2. Effect of Cutting Force Control on Cutting Characteristics of CFRP in Korea IC3MT 2014 2014年9月 Taipei
to the Energy Saving 2. Effect of Cutting Force 共同 IC3MT 2014 2014年9月 Control on Cutting Characteristics of CFRP in
2. Effect of Cutting Force 共同 IC3MT 2014 2014年9月 Control on Cutting Characteristics of CFRP in
Control on Cutting Characteristics of CFRP in
Control on Cutting Characteristics of CFRP in
Characteristics of CFRP in
Diamond Saw Cutting
2 An Innovative Cutting HE LEMOLOUS 2015 F 10 F
3. An Innovative Cutting 共同 LEM21 2015 2015 年 10 月 Method for CFRP to Realize Kyoto
a Defect-free Machining
Without Any Feedback
Control Systems
4. Multiple Recycling of 共同 IC3MT 2016 2016 年 10 月
Corrosion-inhibition Matsue
Improved Amine-free Water
soluble Cutting Coolant
5. A Study on Data Mining 共同 LEM21 2017 2017 年 11 月
Method for Measuring Hiroshima
Sludge Concentration in
Water-soluble Metal Working Fluid
Working Fluid
6. Prediction Model of Power 共同 ICDME2018 2018年7月
Consumption for Variable Melbourne Australis
Material Removal Rate

Machining Process				
7. A Big Data Analysis Technology for Catching Usual/unusual State of Cutting Tool	共同	IC3MT2018 Ho Chi Minh Vietnam	2018年9月	
8. Decorative Film Forma-tion by inkjet printing with Gold Nanoparticles for Crafts	共同	IC3MT2018 Ho Chi Minh Vietnam	2018年9月	
9. Possibility of Repeated Recycle of Eater-soluble Coolant	共同	IC3MT2018 Ho Chi Minh Vietnam	2018年9月	
10. A Study on Cyber-physical System Architecture to Predict Cutting Tool Condition in Machining	共同	DMEER2019 Bari, Thailand	2019年9月	