業績書(教育職員免許法施行規則第22条の6号関係)

氏 名	近藤 康雄	学	位	博士 (工学)
担当授業科目	- - - - - - - - - - - - - - - - - - -	統計	工科系	数学Ⅱ

1 経歴, 学会及び社会における活動等

(1) 経歴

鳥取大学大学院工学研究科准教授1998年2月~2011年2月山形大学大学院理工学研究科教授2011年3月~現在に至る

(2) 所属学会

日本機械学会 精密工学会 先端加工学会 データサイエンス協会

(3) 学会・社会活動

日本機械学会設計工学・システム部門運営委員 2004 年度~2005 年度

精密工学会校閲委員 2005 年度~

精密工学会中国四国支部商議員 2006 年度~2011 年度

 日本機械学会校閲委員
 2007 年度~

 精密工学会東北支部商議員
 2011 年度~

(4) 受賞歴

日本原子力学会技術賞日本原子力学会1994年3月発明協会会長奨励賞鳥取県発明くふう展2002年11月日本工学教育協会業績賞日本工学教育協会2004年8月ICMPT Best Paper Award精密工学会2006年12月AMRMT2016 Best Presentation KSME2016年8月

2 著 書

著 書 名	単著・共著の別	発 行 所 名	刊行年月日	備考
1. 腐食と対策事例集	共著	丸善	1987年3月	
2. 科学って何!	共著	鳥取大学	2007年3月	

3 学術論文等

学術論文等の名称	単独・共同の別	発表雜誌等名	発行年月日	備	考
1. A Damage-Free Machining	共同	Int. J. of Automation	2016年3月		
Method for CFRP Without		Technology			
Feedback Control Systems					

2.Influence of the Brittle Behavior of Work Materials on Microgrooving	共同	Key Eng. Materials	2016年8月
3. Evaluation of the Thermal Shock Fatigue Resistance of Cutting Tools Using CO2 Pulse Laser Beam	共同	Key Eng. Materials	2016年11月
4. A Utilization Method of Big Sensor Data to Detect Tool Anomaly in Machining Process	共同	Advanced Materials Research	2016年11月
5. The Wear Characteristics of a Wire Tool in the Microgrooving of Ceramics	共同	Key Eng. Materials	2016年11月
6. Property and Recyclability Change of Corrosion Inhibition Improved Amine Ffree Water-soluble Cutting Fluids with Repeated Recycling	共同	Key Eng. Materials	2017年9月
7. Fundamental Characteristics of Grooving Aiming at Reduction of Kerf-Loss Using an Ultrafine wire Tool	共同	Materials Science and Engineering	2017年9月
8. Influence of the Brittle Behavior of Work Materials on Polishing Characteristics	共同	Materials Science and Engineering	2017年9月
9. Feature Extraction from Sensor Data Strems for Optimizing Grinding Condition	共同	Materials Science and Engineering	2017年9月

10. Influence of the	共同	MATEC Web of	2018年10月
Characteristics of a		Conference	
Workpiece on the Slicing			
Characteristics Including			
Tool Wear			
11. Extremely Thin Metal Foil	共同	MATEC Web of	2018年10月
Blades as Cutting Tools for		Conference	
Hard and Brittle Materials			

4 学会発表等

発表課題の名称	単独・共同の別	発表学会等の名称	発表年月日	備	考
1. A Supervisory System in	共同	ICMDT2013	2013年5月	MIII	,
Machining Process Leading	N _P	Korea	2013 3 / 1		
to the Energy Saving		Korca			
to the Energy Saving					
2 Effect of Cutting Force	共同	IC3MT 2014	2014年9月		
2. Effect of Cutting Force	光 円		2014 平 9 月		
Control on Cutting		Taipei			
Characteristics of CFRP in					
Diamond Saw Cutting					
2 An Innocesting Cari	#.⊟	LEM21 2015	0015 /5:10 🖰		
3. An Innovative Cutting	共同	LEM21 2015	2015年10月		
Method for CFRP to Realize		Kyoto			
a Defect-free Machining					
Without Any Feedback					
Control Systems					
4 34 11 1 5 11 6		1CO 1T 201 C	0016 10 1		
4. Multiple Recycling of	共同	IC3MT 2016	2016年10月		
Corrosion-inhibition		Matsue			
Improved Amine-free Water					
soluble Cutting Coolant					
5. A Study on Data Mining	共同	LEM21 2017	2017年11月		
Method for Measuring		Hiroshima			
Sludge Concentration in					
Water-soluble Metal					
Working Fluid					

6. Prediction Model of Power	共同	ICDME2018	2018年7月	
Consumption for Variable		Melbourne Australis		
Material Removal Rate				
Machining Process				
7. A Big Data Analysis	共同	IC3MT2018	2018年9月	
Technology for Catching		Ho Chi Minh Vietnam		
Usual/unusual State of				
Cutting Tool				