無人航空機を用いたユーザ位置検出シス テムにおける周波数オフセット補償技術 適用時の特性評価

日本大学 〇山中英 石川博康

衛星通信研究会(RCS研併催)

Nihon Univ.

研究背景及び目的

1

研究の背景

- 大規模災害時に無線通信基地局が機能停止する恐れ
 ⇒一時的に無線ネットワークを提供する必要
- ・無人航空機(UAV)を用いた無人航空機システム(UAS)の
 >国化が期待

研究の背景

- UAVが高度150~1000mの上空を時速40~100kmで旋回
 飛行を想定するUASモデル
- ・UAVーユーザ端末間の周波数にドップラーシフトが発生 ⇒ドップラーシフト量の観測によって位置検出が可能

研究の目的

●従来研究

- ドップラーシフトを観測値とした最小二乗法による位置検
 出システムの提案及び特性評価
- ・最小二乗法によりユーザ位置検出と<u>周波数オフセットの推定
 ・補償を同時に行う位置検出システムの提案
 (2021信学総大, B-3-34)
 </u>

- ・3機のUAVを用いた位置検出システム
- ユーザ位置と
 周波数オフセットを同時に
 推定する位置検出
 システム
- ・ 測位精度と周波数オフセット推定値の関係性を評価

測位原理

ユーザ位置検出手法

- ・地上のユーザ端末からトーン信号(CW波)を送信
- ・複数のUAVを中継して地上制御局で受信
- ・UAV-ユーザ端末間に生じるドップラーシフトを観測
- ドップラーシフト量から最小二乗法を用いて位置検出

ドップラーシフト分布

- ・UAVーユーザ端末間に生じるドップラーシフトを観測
- ・観測値によって得られるユーザ位置は双曲線上に分布
- ・1機のUAVで複数回観測、または複数のUAVで1回観測し、 ユーザ位置を双曲線上の交点として検出可能

Nihon Univ.

周波数オフセット推定・補償

- ・本研究ではUAVとユーザ端末内に内蔵する周波数発振器は独立の関係と仮定
- ユーザ端末内の周波数発振器の精度の安定性によって誤差が生じる(周波数 オフセット)
- ・ 周波数オフセットとしてドップラーシフト量に加算または減算され位置検出
 に影響
- 最小二乗法を利用してユーザ位置及び周波数オフセットを推定・補償

Nihon Univ.

最小二乗法を用いたし置検出
・UAV-地上端末間で得られるドップラーシフトの式

$$fd_i(t) = -\frac{V_{xi}(t)(X_i(t) - x) + V_{yi}(t)(Y_i(t) - y) + V_{zi}(Z_i - z)}{\lambda\sqrt{(X_i(t) - x)^2 + (Y_i(t) - y)^2 + (Z_i - z)^2}} + r_i$$

 $fd_i^0(t) = -\frac{V_{xi}(t)(X_i(t) - x^0) + V_{yi}(t)(Y_i(t) - y^0) + V_{zi}(Z_i - z)}{\lambda\sqrt{(X_i(t) - x^0)^2 + (Y_i(t) - y^0)^2 + (Z_i - z)^2}} + r^i$
 $fd_i^0(t) = -\frac{V_{xi}(t)(X_i(t) - x^0) + V_{yi}(t)(Y_i(t) - y^0) + V_{zi}(Z_i - z)}{\lambda\sqrt{(X_i(t) - x^0)^2 + (Y_i(t) - y^0)^2 + (Z_i - z)^2}} + r^i$
 (-1)
 i 観測されるドップラーシフトの真の値 $fd_{mi}(t)$
 i 成対して $fd_i(t) \ge G^{\pm}$ である測定残差成分 $\Delta fd_i^0(t) \ge O$ 関係
 $\Delta fd_i(t) = fd_{mi}(t) - \Delta fd_i^0(t) \cdots (3)$
 i 初期値からの変化量($\Delta x, \Delta y, \Delta F$)とし、
 ψ 下の方程式を得る
 $\Delta fd_i(t) = \frac{\partial fd_i(t)}{\partial x} \Delta x + \frac{\partial fd_i(t)}{\partial y} \Delta y + \frac{\partial fd_i(t)}{\partial F} \Delta F \cdots (4)$
 i (5)
 i (4)
 i (5)
 i (7)
 i (5)
 i (7)
 i (6)
 i (1)
 i (2)
 i (2)
 i (2)
 i (2)
 i (3)
 i (3)
 i (4)
 i (4)
 i (4)
 i (5)
 i (4)
 i (5)
 i (6)
 i (4)
 i (6)
 i (6)
 i (6)
 i (6)
 i (6)
 i (7)
 i (

____ Nihon Univ. __

衛星通信研究会(RCS研併催) –

シミュレーションモデル

シミュレーションモデル

シミュレーション結果

位置検出誤差面的分布図①(t = 0s)

青色に近いエリア ⇒ 位置検出誤差が0mに近く精度が良好 黄色に近いエリア ⇒ 位置検出誤差が100m(≥100m)に近く 精度が劣化

 モデル1:全体的に精度が50m前後劣化 100mを超えるエリアが少ない
 モデル2:黄色のエリアがモデル1より多く分布 青色(20m以下)のエリアも多く分布

诵信研究会(RCS研併

Nihon Univ.

位置検出誤差面的分布図②(t = 0s)

- ・モデル4の方が<mark>青色</mark>のエリアが多い
- 初期位相差∆θ=120°を与えたモデル4の方が位置検出の精度が良好

⇒ドップラーシフトによる双曲線の交点が得られやすい

周波数オフセット推定誤差面的分布図

・青色に近いエリア⇒周波数オフセット推定誤差が0Hzに近く精度が
 良好
 ・黄色に近いエリア⇒推定誤差が100Hzに近く精度が劣化

2021/9/1

周波数オフセット補償時の面的分布②(t = 0s)

位置検出誤差の累積分布特性 (t = 0s)

•累積確率50%値

- •モデル3の方がモデル1よりも精度が良好
- モデル2とモデル4はほぼ同等な精度
- •累積確率90%値
 - モデル1の方がモデル3よりも精度が良好
 - •モデル4の方がモデル2よりも精度が良好

<u>結果:位置検出誤差累積分布特性</u>

位置検出誤差累積分布特性(2)

衛星通信研究会(RCS研併催)

結果:位置検出誤差の時間特性(50%值,90%值)

- 各モデルとも時刻に応じて位置検出誤差が変動
- 初期配置が同じモデルよりも互いに初期配置を120°ずらした 配置の方が精度が良好
- モデル2, モデル4では時間的に大きく精度が劣化するUAVの 配置が確認 ⇒ UAV同士が最接近する瞬間

時刻50sにおける位置検出誤差分布比較

- *t* =50s ⇒ UAV同士が最接近する瞬間
- 両モデルとも交点が得られにくいエリアが確認

まとめ・今後の課題

まとめ

- ・最小二乗法によりユーザ位置検出と
 周波数オフセットの
 推定・補償を同時に行う位置検出システム
 - 3機のUAVが円旋回する飛行モデル
 - ・周波数オフセット量の推定精度と位置検出誤差の特性を評価
 - ・周波数オフセット分布と位置検出誤差分布の関係性を評価
- •初期位相差を与えることで平均的に精度が良好
- ・周波数オフセットの推定・補償を行う手法
 - ・理想的なモデルよりも若干精度が<mark>劣化</mark>
 - ⇒ 時刻によらず良好な精度が得られることが可能
 - ・推定精度が劣化するエリアで位置検出精度も同時に劣化

今後の課題

- ・ユーザ位置検出と周波数オフセット推定の関係
 性を詳細に検討
- ・位置検出誤差が最良となる飛行モデルの提案
- ・周波数オフセットの推定誤差が最良となる手法の検討

謝辞

本研究はJSPS科研費 19K04380の助成を受けたものであり, その支援に深く感謝いたします.

御清聴ありがとうございました.