ccd、この意味をご存知だろうか。coldy colony collapse disorder、日本語では蜂群崩壊症候群と訳される。アメリカでは2006年から2007年に養蜂の25%に当たる大量のミツバチが消えている。したがって、ミツバチの話は、蜂蜜の価値が上がるくらいの話だろうと思ってはいけない、大変な問題なのである。アメリカで年間20億ドルの売り上げを誇るアーモンドは、ミツバチがいなければ生産できない。オレンジ、レモンなどの柑橘類においても事情は同様である。現代の農業において、果実、種子を大量生産するためには、人工的に大量繁殖させたミツバチがなければ、受粉が成り立たなくなっているのである。ミツバチの異常減少は、アメリカを始めとする多くの国の農業にとって深刻な問題となっている。

日本においても2008年の秋頃から、ミツバチの急減が業界内外でささやかれ始め、農水省が情報収集に乗出しさらず、さらに外国から女王蜂を輸入するための交渉を始めている。

どうして世界規模でミツバチが減少しているのか、多くの科学者が問題の解明にあたっているが、その原因は現段階でも特定されていない。農薬、ダニ、気候変動などのモデルが提案され、消えているのが実情である。そのため、単独要因がいくつつかの要因が複合しているとの見方が現在優勢である。例えば、ある農薬は単独で用いた場合、生態系においても影響を与えないが、違う種類の農薬と混合させると、劇的に悪影響が現れる場合がある。また、農薬にとっての農薬と言われる浸透性農薬の登場は、問題をさらに複雑なものにしている。日本では世界でも有数の農薬使用国であり、私たちのまわりにも、この種の農薬を使った野菜が、知らぬうちにかなりの量存在しているものと思われる。

農薬問題と同時に、ミツバチの成育環境も遅せる問題になるという。秋からの冬に向けて、冬の夜明けにミツバチは、コージュショップで大量に与えられる場合がある。その結果、蜂児の数は一時的に増加するが、タンパク質が足りなかったために、ミツバチの免疫力は著しく低下するのである。

科学者は、観察、実験を通じて推論を重ね、事象を説明するモデルを構築しようとする。多くのモデルは入力が1つで出力が2であるが、入力を10としたとき出力が20になるという、いわゆる相関モデルを基本とし、推論るのは、自然のモデルを否定している。入力データの組み合わせによっては、結果はまったく異なるものになることを表しているのだから。

ccd、技術者への教訓

教授 濱田幸雄

では現在最も効果的なccdへの対処法とは何か。それは昔ながらの方法でミツバチを育てることだという。ミツバチにストレスを与えず、四季折々に咲く花粉が花蜜でミツバチを育てるという方法である。牧草だけでなく、ウシュが狂牛病に罹らないうちに同様であることである。

自然は常に過ぎ去りを修正する方向に働くといわれる。地震も、居住空間においても、おそらく対処する環境は、ウィルスやストレスに対する生存を低下させる。そして、モバイル機器への依存の依存は、生物本来のコミュニケーション能力を低下させる。そのため、日本の人口が減少傾向に転じたとは言わないうが、計算能力、情報処理能力は確かに低下しているように思う。のび太がタイムマシンで未来に行き、3桁の掛け算を筆算で解いて一躍英雄になったという物語が、漫画の中だけの話ではなくたぶんある。

ccdは、農薬を大量生産させてきた人類の自然からの警鐘であると言える。人類がその個体数において現在の繁栄を築くことができたのは、小麦、米などの穀物を栽培することができるようになったことによる。農作物を大量に生産するため、農薬が使用されるようになり、人工肥料に改良が加えられ、水耕栽培が多用され、人工光源まで使われるようにになってきた。土から離れた農薬に対する戦意を、現代人の多くは感じなくなってしまっている。

建築家においても同様なことが言える。超高層マンションの林立は、土に対する人々の執着が希薄化によるものとは言えないだろうか。技術者は、高さへの挑戦、強度への挑戦などの命題のもとに、ひたすら新しい工法や材料の開発に挑んでいる。その結果、土から離れられて一年中温度一定の居住空間で生活している人間がどのように影響を受けかかるかについては、他の研究者、技術者に委ねてしまい自分で考えようとはしない。人間が作り出した世界と、自然界との絶対的な違いは、後者には数億年という時間フィルターの作用により「孤立」した部分なく「部品」がないということである。ある生物の消滅は自然界全体に影響を及ぼすということができる。私たち人間も、その自然界に存在すること、科学技術の在り方がどうであろうか、今回の東日本大震災を機に考える必要がある。

（※詳しくは文春文庫、ローレン・ジェイコブセン著、ハチはなぜ大量死したのか、参照）
2011. 3. 11 東日本大震災からの復旧・復興に向けた活動紹介

平成23年度 震災復旧・復興に向けた本学科の主な活動一覧

- 3月11日、東日本大震災発生。学内の安全確認（物理的・心理的被害なし）。
- 3月中旬、全教員による学生の安全確認を実施。
- 浅里教授は、3〜4月に福島県内の主たる建物被害の調査を実施。
- 遠水深海教授は、4月以降、日本建築学会歴史・意匠委員会災害特別調査研究WGの一員として、福島県内外の歴史的建造物の被害調査を実施。
- 4月18日、「福島県庁旧仮設住宅」の一次公開にて、浦部准教授と浦部研究室が計画・設計に関わった日本建築学会の保存に関する調査を実施（福島県担当）。
- 4月8日、土方准教授は、市町村や市町村研究室が計画・設計に関わった日本建築学会の保存に関する調査を実施（福島県担当）。
- 7月8日〜10日、市町村研究室は、エリアマップ・プログラム県中地域の活動として、福島大学学術情報学会支部のインフラ調査を行った。
- 7月19日、「福島県庁旧仮設住宅」の一次公開にて、浦部准教授と浦部研究室が計画・設計に関わった日本建築学会の保存に関する調査を実施（福島県担当）。
- 4月30日〜5月9日、出村教授、パリルク教授、齋藤助教は、日本建築学会東北支部材料部会として、建物の非構造部材（天井・外壁・屋根）の被害調査を実施（福島県担当）。
- 5月8日、土方准教授、市町村研究室が、日本建築学会東北支部福島支部として、南相馬市内の被災状況を調査し、日本建築学会にレポートとして報告。
- 7月8日〜10日、市町村研究室は、エリアマップ・プログラム県中地域の活動として、福島大学学術情報学会支部のインフラ調査を行った。
- 7月19日、「福島県庁旧仮設住宅」の一次公開にて、浦部准教授と浦部研究室が計画・設計に関わった日本建築学会の保存に関する調査を実施（福島県担当）。
- 8月2日、土方研究室は、内閣府地本庁庁舎改修設計プロポーザルの審査員を務める。
- 9月9日〜9月17日、町村研究室が開催された地区の復興をテーマとした日本建築学会主催学生デザインワークショップにおいて、土方研究室長が参加（オブザーバーとして土方准教授、市町村研究室が参加）。
- 9月9日〜9月17日、町村研究室が開催された地区の復興をテーマとした日本建築学会主催学生デザインワークショップにおいて、土方研究室長が参加（オブザーバーとして土方准教授、市町村研究室が参加）。
- 9月9日〜9月17日、町村研究室が開催された地区の復興をテーマとした日本建築学会主催学生デザインワークショップにおいて、土方研究室長が参加（オブザーバーとして土方准教授、市町村研究室が参加）。
- 土方研究室長は、9〜12月、NPO「まちがいKORIYAMAとの連携活動として、郡山市中心市街地（本町）におけるまちづくりワークショップやレンタルシェル利用の歩行ルート調査及び利用者アンケート調査を実施。
- 浅里教授は、8〜10月、郡山県庁庁舎新築設計プロポーザルの審査員を務める。
- 9月9日〜9月17日、町村研究室が開催された地区の復興をテーマとした日本建築学会主催学生デザインワークショップにおいて、土方研究室長が参加（オブザーバーとして土方准教授、市町村研究室が参加）。
- 土方研究室長は、9〜12月、NPO「まちがいKORIYAMAとの連携活動として、郡山市中心市街地（本町）におけるまちづくりワークショップやレンタルシェル利用の歩行ルート調査及び利用者アンケート調査を実施。
- 浅里教授は、10〜11月、NPO「まちがいKORIYAMA及び郡山市の連携活動として、郡山市中心市街地（本町）において住民によるワークショップやレンタルシェル利用の歩行ルート調査及び利用者アンケート調査を実施。
- 土方研究室長は、10〜11月、NPO「まちがいKORIYAMA及び郡山市の連携活動として、郡山市中心市街地（本町）において住民によるワークショップやレンタルシェル利用の歩行ルート調査及び利用者アンケート調査を実施。
- 10月22日、パリルク教授は、構造技術研究会と放射線遮蔽コンクリートトポロジー研究会主催の公開シンポジウム「福島県から大震災と原発災害の今後を考える」を企画・運営。
- 10月29日、浦部准教授は、日本建築学会歴史・意匠委員会災害特別調査研究WGの一員として、旧ノートルダム修道院（福島市、設計：J.J.スキー、1985年）の被災調査を実施（東日本大震災の影響を受けた地域）。
- 11月25日〜27日、浦部准教授は、福島県建築士会郡山支部との同会が2005年に制作した『郡山の建築遺産50選』の被災状況調査を実施。
- 1月24〜25日、浦部准教授は、福島県建築士会郡山支部との同会が2005年に制作した『郡山の建築遺産50選』の被災状況調査を実施。
- 1月24〜25日、浦部准教授は、福島県建築士会郡山支部との同会が2005年に制作した『郡山の建築遺産50選』の被災状況調査を実施。
- 1月24〜25日、浦部准教授は、福島県建築士会郡山支部との同会が2005年に制作した『郡山の建築遺産50選』の被災状況調査を実施。
- 1月24〜25日、浦部准教授は、福島県建築士会郡山支部との同会が2005年に制作した『郡山の建築遺産50選』の被災状況調査を実施。
- 1月24〜25日、浦部准教授は、福島県建築士会郡山支部との同会が2005年に制作した『郡山の建築遺産50選』の被災状況調査を実施。
- 1月24〜25日、浦部准教授は、福島県建築士会郡山支部との同会が2005年に制作した『郡山の建築遺産50選』の被災状況調査を実施。
平成23年度 博士（工学）学位論文

平成23年度は、博士後期課程に社会人大学院生（東京都立大学経済学部）として在籍する松下信子院生が博士（工学）の学位を取得された。次にその論文要旨を掲載し、ここに祝辞したい。

「地方自治体庁舎の座席配置からみた勤務環境特性に関する研究」

建築学専攻 松 下 信 禎

本論文は、地方自治体庁舎における勤務環境の変容に着目して、勤務座席の配置実態調査や人間工学的な実験などを通じて当該勤務環境の特性や問題点を明らかにし、これが地方自治体庁舎における勤務者の座席配置や勤務環境を策定するための基盤資料を得ようとするものである。

第1章では、本研究に至る経緯、既往の関連研究、本研究の目的と範囲、本論文の構成について述べ、本研究の位置づけを行った。第2章では、地方自治体庁舎における座席配置の実情からみた勤務者の着座特性などについて検討した。第2章第1節では、新築移転した庁舎等を対象事例として、各地方自治体庁舎における座席配置の実情について調査を行った。勤務者の属性の違いによる座席配置の検討を行い、勤務者の役職と勤務者の身体の向き及び距離の関係などについて特徴を示した。次に、勤務者の年齢と座席配置の関係に着目して調査を行い、上位の役職者での座席相互の直線距離と勤務者の年齢との関係から、その特徴を示した。第2章第2節では、勤務者的人事異動などに伴う座席の移動履歴に関する調査を行った。勤務者の勤務年数や役職による違いなどから検討を行い、勤務者の加齢に伴う座席配置の変容過程について、その特徴を示した。第3章では、勤務座席の配置条件の違いによる「場の優位性」に関する検討を行った。出入口と窓のみで構成された勤務室内に、2人及び3人の少人数座席で構成された座席配置の組合せについて、図式によるシミュレーション調査を行った。座席の優位性が高くなる共通条件として、①出入口から遡り位置にある座席、②窓に近い位置にある座席、③単独に離れた座席、④他者を後方に配置しない座席などの環境的要因が指摘された。第4章では、地方自治体庁舎における勤務者の対象にして日常的なVDT作業環境に関する実態調査を行うとともに、座席配置の違いとパソコンの表示画面の見やすさとの関係について、実験的に検討を行った。事前の調査から、採光の影響が予想された窓際で座席のVDT作業環境に着目して、勤務者の役職の違いなどについて比較検討した。VDT作業時の表示画面の見やすさという観点からみると、窓際座席は、当該役職者にとって必ずしも好適な視環境場所ではないことなどを指摘した。第5章では、地方自治体庁舎の勤務室内を想定した通路幅について、歩行者の身体構造に必要なアキシス（目的の動作を完遂するために行為者の身体構造に意識的または無意識的に構成される非接触の空間的領域）を計測して比較検討した。特に、通路条件の違いからみた通路幅とアキシス法について計測実験を行い、身体周囲に必要なアキシス法と通路幅に対するアキシス法の関係などについて新たな知見を示した。第6章は、「結論」そして、第2章から第5章までに得られた知見について総括したものである。

最後に、本論文をまとめるにあたり、多大なるご指導を賜りました本学大学院教授 若井正一博士に深く謝意を表します。また、貴重なご教示、ご助言を賜りました同教授 三浦克信博士、工学院大学教授 長澤 泰博士に感謝の意を表します。さらに、実態調査や実験の成果を提供していただいたF県の地方自治体庁舎関係各位に御礼申し上げます。本論文をまとめることができたのも、多くの方々からのご指導とご助言をいただいたからにほかなりません。ここに、謹んで深く感謝の意を表します。
大学院特別講義聴講報告

「避難施設の居住環境の問題とその対応策」（永幡幸司先生）を聴講して

大学院前期課程1年 橋本博貴

今回の大院特別講義は、2011年12月6日（火）、70号館706教室にて、院生・学部生・教員含めて約140名が出席し、永幡幸司先生（福島大学理工群共生システム理工学類准教授）による「避難施設の居住環境の問題とその対応策」と題する講演がなされた。震災による音環境の変化がもたらす問題、避難所における生活環境の問題を様々なスライドを用いて、とても分かりやすく説明いただいた。

永幡先生は、音環境の問題を物理的な問題として捉えるだけでなく、人間サイドからの視点を重視し、音環境の問題を捉えなおすサウンドスケープについて研究されている。

講義内容は多岐に渡るが、本稿では新潟県中越地震の（旧）山古志村の被災者、鶴神宮前大震災と雲仙岳山被害の被災者、東日本大震災の被災者の方々の避難生活における問題について、印象に残った事項について述べる。

避難所は大まかに体育館や公民館、コミュニーセンターなどに分けられる。避難所における不満点を明確にするためにアンケートとインタビューを実施した。生活環境の問題として、生活空間の広さ、温熱環境、明るさ、音、プライバシー、風呂、トイレ、その他の設備が挙げられた。避難所でのどのようなストレスを受けるか、不安、不愉快、ストレス、人付き合いの4項目についてアンケートを实施している。

アンケートの結果、体育館はトイレが1箇所のみであるため、高齢者には不便な回答が多くみられた。次に温熱環境については、ストレッチに近い人は苦、遠い人は寒いという結果が報告された。また明るさの問題として、照明の調整が恵かず、普通は明る過ぎるか、暗すぎているといった問題があげられた。更に体育館は音が反響しやすくうるさいという回答もあった。足音については、遠くで聴えているときの振動が伝わるため、永幡先生の経験からも夜中トイレに行く足音を目覚めてしまうということだった。最後に音については、全員が一台の大きなTVを視聴するため、テレビを見たくないという人には迷惑であることが分かった。機能的に同一の共有スペースであっても、避難所ごとに相違点があることに関わる。

次にアンケートの自由記述から、ストレスが生活環境にどのような影響を与えているのかをロジックテック回帰分析を用いて探った結果が報告された。その結果、音とストレスの間にのみ、有意な関係が見られることが分かった。音に対して問題を感じた人は、不安を感じやすいということが明らかになった。また音に対する回答の内容をさらに検討すると、音自体への反応ではなく、将来的な不安に対するものであるということが分かった。一般論として、人は騒音にさらされることにより不安感を抱くということが知られてい

音と不安感の間に有意な関係がみられるということは、音環境が避難所生活にとっていかに重要であるかを示している。同じ環境で生活していても、不安を感じる人、それも不安を感じない人もいるが、音に対する感受性が高い人は不安を感じやすいということは興味深い結果である。

避難所の環境問題の中で、音の問題より衝撃の高い生活環境の問題が他にもあるが、特にストレスと音との問題が強く結び付いていることが分かった。避難所として、体育館は公民館に比べて明らかに音環境が悪いことが挙げられる。不安とストレスは、音環境の問題を解決することにより一定程度低減される可能性があることが分かった。

東日本大震災後に福島大学を避難所にした際、音環境の計画が上手くいった事例を永幡先生が説明された。床の工夫として、断熱材の上に体育館で使うマット、その上に毛布を敷くことにより振動を防ぐことができるとあることである。毛布は吸音率が高いため、体育館内のざわざわ感を解消できる。また足音の振動を軽減でき、騒音など静けさを求める人達にはスペースを区切り、TVなどから距離を置くことにより改善した。音を出したい人たちは、避難所でのストレスは溜まる一方であるため、大きな音を出せるようなスペースを設けた。またTVの音の問題として、何台かを分散させて配置することにより、一台当たりの音量が下がれ、チャンセル音を無くし、和気あいあいの避難所生活を送ったということである。生活スペースの区画があればよいわけではなく、パブリックスペースを適切に配置することで、共用空間を適切に配置できるような平面計画をもつ体育館が必要である。避難所の収容人数を施設数で割り算するようなことでは、より良い共有空間は生まれない。空間的に有程度余裕もたせることが重要であり、最低限毛布や断熱材を常備しており、本稿で述べた問題を解決できるということである。

私は今回の講義を聞き、音に関しては社会的にあまり認知されていないということを痛感させられた。音は聞き方によっては素晴らしいものであるが、人間に与えるストレスは大きく、人の尊厳と福祉に関わる重要な問題であることを再認識することができた。
大学院特別講義聴講報告

「津波と建築」（増田光一先生）を聴講して

大学院博士前期課程1年 木村光美

平成23年12月8日（木）、本館3階第一会議室にて、「津波と建築」と題して、増田光一先生（日本大学理工学部海洋建築工学科教授）による大学院特別講義開催され、大学院生・学部生・先生を含めて約30名が聴講した。先生の専門分野は、水波工学、浮体システィーマ工学及び波害防災工学であり、講義では、津波のメカニズム・東日本大震災による津波での建築物の被害状況、建築物の耐津波設計の考え方などについて解説された。本稿では、その概要について述べる。

日本列島周辺では、4つのプレートが押し合っている。日本列島は大陸側の北アメリカプレートとユーラシアプレートの上に乗っており、その下に海洋側の太平洋プレートとフィリピンプレートが沈み込んで、日本海溝や南西トラフで多くの地震が発生する。今回の地震は、太平洋プレートが沈み込む日本海満付近で発生したが、海洋側と大陸側の2つのプレートの境界面に発生した応力が解放され、大陸側のプレートの先端部が上方に変位し、その上部の海水が持ち上げられて、地震津波が発生した。

海洋における津波の波高は、外洋では数10cmから、2〜3m程度であるが、津波が陸地に接近して、水深が浅くなると波高が大きくなる。特に、リアス式海岸のように複雑に入り込んだ地形では、非常に高い波が生じる。一般に、平常潮位（津波がないときの潮位）からの波の高さを「津波の高さ」といいう。その波が到達した陸地の海抜高度を「週上高」と呼ぶ。また、津波被害を受けた建物などの調査で確認される高さを「痕跡高」といいう。これらを含めて「津波高」という。週上高の世界記録としては、アラスカにおける氷山の崩落によって発生した520mである。この説明を受けて受講者は驚かれた。

一方、都市部港湾における津波の威力としての「サザードチェーン」についての指摘がなされた。これは、津波による3次災害を表すもので、津波によって破壊した船舶などが、貯蔵タンクを破壊し、オイルなどが漏れて、火災に至るという被害の連鎖をいう。

これらの解説の後、海岸線での津波高を示す換算比線、週上津波高が10m以上の沿岸域での津波波高が顕著であったため、特に、宮古や仙台の沿岸域における建築物の被災の実情を調査したことが述べられた。なお、これらの地域の津波高は、沖合における波高が5.7〜6.7m、換算に入射津波高が10.9〜13.3mに達している。

調査結果については、各地域の地形と津波の海岸への来襲・週上地形の関係や波の現状が述べられた。沿岸付近の建物に関して、木造はほぼ全壊に近し、S造に関しては壁が抜け落ちて骨組みだけとなっているものが多く、RC造は比較的原型をとどめていることが示された。一方、船橋の衝突や津波対策の衝突による被害があることや、RC建築物であっても引き波による倒壊が起きていることなどについての報告結果も示された。

その後、今回の調査結果を踏まえて、1.建物セントサーの提案の静水圧近似を基にした建築物に作用する津波波圧算定式の適用範囲の明確化、2.津波の流速による建築物に与える衝突荷重の評価法、3.解釈津波の流速による建築物における流速の影響の評価法について検討する必要があることが指摘された。

最後に、これらの指摘に関する増田先生の研究結果が示され、今後、建築物の耐津波設計の一般化を図るにあたり、建築物の津波被害に関するシミュレーションと水槽実験を重ねた上での検討が必要であると述べられた。

海岸線に囲まれた我が国においては、沿岸域に建設される建築物については、津波対策を考慮した設計・施工が重要であることを強く認識することができ、非常に興味深い講義であった。今後、津波対策に関して各分野での研究が急速に進んでいく中、建築を学ぶものとして、このような災害対策の一助となる建築技術の発展に貢献していきたいと思う。
平成23年度 日本大学大学院工学研究科建築学専攻 修士学位論文発表会
日時：平成24年2月17日（金） 場所：日本大学工学部 70号館5階 7055・7056教室

＜計画・環境系＞ 7055教室
1．仙台市中心市街地に立地するアーケード内施設用途構成と変容に関する研究
秋葉辰也（指導：三浦金作 教授）
2．福島県における身体障がいを含むグループホーム等の空間構成の評価に関する調査研究
阿部智史（指導：若井正一 教授、松井壽則 准教授）
3．主観評価実験による重量床衝音の評価方法の検討
井上恭平（指導：濱田幸雄 教授）
4．ローマの街路空間における探索歩行時の注視に関する研究
今川理香子（指導：三浦金作 教授）
5．中世禅宗様における中国様式の受容－尾垂木の力学特性を中心に－
春日太郎（指導：遠水清孝 准教授）
6．自動開閉ドアにおける歩行者の通過行動特性に関する人間工学的検討
木下勇太郎（指導：若井正一 教授）
7．プロセシアンを持つ劇場・ホールの管理・運営に関する研究－公立文化施設を事例として－
坂上敦志（指導：浦部智義 准教授）
8．地方都市における都市更新手法に関する研究
佐々木健人（指導：三浦金作 教授、土方吉雄 准教授）
9．吹き抜けを有する空間の音響特性及び設計手法に関する研究
鈴木 極（指導：濱田幸雄 教授）
10．自転車走行環境整備に関する研究
鈴木聖太（指導：三浦金作 教授、土方吉雄 准教授）
11．GL工法による遮音欠損に関する研究
添田太資（指導：濱田幸雄 教授）
12．レーザードップラー振動計の応用技術に関する研究
多喜生一（指導：濱田幸雄 教授）
13．重量床衝音発生器の開発
中村俊幸（指導：濱田幸雄 教授）
14．木造仮設住宅の供給プロセスと住環境整備の研究
－東日本大震災後の福島県内の仮設住宅を対象とした考察－
早川真介（指導：浦部智義 准教授）
15．生活姿勢の身体支持条件に関する人間工学的検討
平林卓朗（指導：若井正一 教授）
16．就寝まわりの起居様式と寝具の使用実態に関する検討
松本 学（指導：若井正一 教授）
17．日常生活における歩行活動と開口部の通過頻度の関係についての検討
宮下佳和（指導：若井正一 教授）
18．アーケードのある街路空間における来訪者の行動特性に関する研究
柳沼一輝（指導：三浦金作 教授）

＜構造・材料系＞ 7056教室
19．構造物と地盤の相互作用を考慮した地震応答解析に関する研究
安齋泰弘（指導：Buntara S. GAN 准教授）
20．地震被害を受けた中層RC造建物における立体振動性状
海老沢哲規（指導：千葉正裕 教授）
21．二重格子を用いたアルゴリズムによる粒子法の高速化に関する研究
川田尚弘（指導：Buntara S. GAN 准教授）
22．3次元FEM解析を用いた鉄骨構造の設計および耐震補強に関する研究
黒川順平（指導：Buntara S. GAN 准教授）
23．弾性体に対する動的縮小法の適用性に関する研究
小林直道（指導：Buntara S. GAN 准教授）
24．表面含浸材の性能評価
斎藤耕司（指導：出村克成 教授）
25．構造要素の粘弾性理論に関する基礎的研究
德永裕子（指導：倉田光春 教授）
26．伝達的アルゴリズムによる切り換えの最適化
二宮裕治（指導：Buntara S. GAN 准教授）
27．均質化法に関する解析的研究
藤田香里（指導：Buntara S. GAN 准教授）
28．NURBS既定形状を用いた有限要素解析手法に関する研究
丸山 淳（指導：Buntara S. GAN 准教授）
29．単層ラチェスシェルの非線形解析に関する基礎的研究
三嶋謙裕（指導：倉田光春 教授、野田英治 専任講師）
山本 学（指導：Buntara S. GAN 准教授）
30．テンセグリティー構造の形態創生
平成23年度 日本大学工学部建築学科 卒業研究発表会

日時：平成24年2月6日（月） 場所：日本大学工学部 70号館1階 7014教室（五十嵐ホール）

1. 子育て環境における震災後の復旧状況に関する研究
 安齋義彦・松井 眞（指導：市岡洋子 専任講師）
2. 高齢重複障がい者の住宅改造・改修に関する研究
 重複している障がい者住宅改修に与える影響について
 前森優樹（指導：松井篤則 准教授）
3. 「ロパスの家3号」の室内における快適性の研究
 室の高さ差を利用しての室内の風の調節
 仲田亮平（指導：浦沢義文 准教授）
4. 立位による停留姿勢からみた身体支持条件に関する人間工学的検討
 障害者向け立位の電位分布について
 増子雄大（指導：若井正之 教授）
5. 花・フィレンツェの街並空間における昼下がり時の注視に関する研究（2011）
 渡邉信太・和田友一さん・八卷和也・佐藤 慎（指導：三浦金作 教授）
6. 東日本大震災による長期避難所における生活空間利用に関する研究
 岡部 亘（指導：元崎吉雄 准教授）
7. 吹き抜けを有する空間の音響特性及び設計手法に関する研究
 江積亮平・遠藤聡子・水澤 慶（指導：黒田泰雄 教授）
8. ハイブリッド型断熱繊補強ポーラスコンクリートの開発
 三浦裕輔（指導：Sanjay PAREEK 准教授）
9. Cu-Al-Mn超弾性合金を用いた自己修復コンクリートの基礎的研究
 阿部善文（指導：溝口茂夫 教授）
10. 常温コンクリート建物の耐震診断結果に関する研究
 森 炳（指導：千葉正裕 教授・日比野利 教授）
11. 既存鉄筋コンクリート建物の耐震診断結果に関する研究
 廣瀬 亨・富田矩大（指導：倉田光春 教授）
12. 水柱の振動吸収体による建物の振動抑制の研究
 藤原 聡（指導：Buntara S., GAN 准教授）
13. 個別要素法による構造解析に関する基礎的研究

教室ニュース

■浦沢准教授は、10月25日、都市ビューホテル東京で開催された東邦銀行・日本大学工学部・日本大学産学連携総合事務所主催による「建築学部産学連携セミナーにおいて、「2020年のパッシブ住宅～福島県の復興に向けて～」と題して講演を行った。

■浦沢准教授と浦沢研究室が計画・設計に関わった「ロパスの家3号」の完成ブレッド発表が、11月17日に工学館内で行われた。

■浦沢准教授は、11月18日、福岡市街中心部で開催されたJLA福岡支部「第3回 フクシアグサ支援会議」において、「これからの自然環境形成への取り組み」と題して講演を行った。

■浦沢准教授と阿部直也非常勤講師が執筆に参加し、浦沢研究室が制作に協力した「木造仮設住宅群」が、ホット出版から12月に刊行された。

■遠藤安泰君（浦沢研究室）は、12月、社団法人イタリア産業大学会主催「2012住まいのイタリア建築ディンナーパネル」において、作品名「箱の中のマトリョーシカ」が部門賞を受賞した。

■松井准教授と市岡講師は、12月12日、須賀川市で開催された須賀川市小学校連携プロジェクト協議会で、協会意見書に委員を務められ、松井准教授は委員長を務められた。

■市岡講師は、12月22日、都市്商務市港に市岡講師会事務局が、ボット出版から12月に刊行された。

■市岡講師は、12月21日、都市課務市港に市岡講師会事務局が、ボット出版から12月に刊行された。

■浦沢准教授は、1月24日、仮設会議事務局の新たな活動に関する活動に対し、新田市長より感謝状が贈与された。

■土崎准教授は、1月30日、日本大学総合総合事務局として、自己修復コンクリートに関する調査研究のため、Delft University of Technologyへ海外出張に出発した。

■浦沢准教授は、2月15日、機械工学科の加藤教授、橋本教授、伊藤教授、武庫谷教授とともに、業績名「ロパス工学」とロパスの家で、日本機械学会教育賞を受賞された。

■遠藤安泰君（浦沢研究室）は、1月16日、仙台国際セミナーで開催された日本コンクリート工学会（JCIC）「Foldingコンバンを世界の発生抑制及び有効利用に関する技術検討委員会」において、司会及び実施委員として登壇を行った。

■浦沢准教授は、1月2日、都市ビューホテル東京で開催された、アカデミア・コンソーシアムふくしま主催「福島の復興と教育の使命を可能に」において、戦略的な学連携支援プログラム活動報告の一環として、エリアキャンパス・プログラムにおける仮設課題までの活動成果の報告を行った。

■土崎准教授は、3月2日、NPO法人まちのつながりKORISHIMAとの共同研究「都市市中市中地・市内地区におけるまちづくり」として、レジリエンス技術利用データを用いた自転車走行環境評価の成果報告書をまとめてプラザ（山間まちか交流拠点）で開催した。

■浦沢准教授と浦沢研究室は、3月6日～31日にパリ文化会館で開催された国際交流基金主催の建築展「3.11－東日本大震災の直後、建築家はどう対応したか？」に、計画・設計に関わった「KAMAISHIの箱（仮設住宅）」が、「仮設住宅」のパネルに出展された。

■浦沢准教授と浦沢研究室が計画・設計に関わった「福島県総合設計事務所のロパス工学」と仮設住宅の模型「わくプロジェクト」を主催する「わくプロジェクト展示会@3331」に、3月9～25日に展示され、浦沢准教授の同シンポジウムにて活動報告を行った。

■浦沢准教授と浦沢研究室は、3～5月に開催される仮設建築コンサルタント主催「3.11後の建築、都市、建築家たちは地域どう再生しようとしているのか？」展示会にて、仮設会議事務所の「ロパス計画（仮設住宅）」のパネルを出展した。
平成23年度 卒業式・修了式における表彰者
平成24年3月25日

○ 斎藤 賢
修士論文「主観評価実験による重量床衝撃音の評価方法の検討」
井上恭平（指導：濱田幸雄 教授）

○ 北村 愛
修士論文「テンセグリティー構造の形態創生」
山本 学（指導：Buntara S.GAN 准教授）

○ 桜井 建平
卒業設計「懸る器 - 行き場を失ったモノを炭坑内へ-」
卒業論文「女の若さを、自分らしさを、皆さんが聴きなさい」
佐藤 慎,八卷和也, 遠藤洋樹, 和田友一（指導：三浦俊作 教授）
卒業論文「「ロハスの家3号」の室内における快適性の研究」
川合 弘之（指導：渡辺克明 准教授）

○ 優等賞
千葉 新,須賀ひかり,佐藤楓紀

○ 学術工学賞
学術・文化部門：佐久間浩治
第14回BiA東北建築学生賞（日本建築家協会東北支部主催）特別賞受賞 作品名「CHARA～CTURE ～Trick Shot Museum～」
学術・文化部門：衝田良平
第15回BiA東北建築学生賞（日本建築家協会東北支部主催）優秀賞受賞 作品名「TRANSFORM ～暮らしの記憶～」

○ 父母会賞
町田将比古,三浦雅晴

○ 校友会賞
勝村茂亮
日本大学工学部学部文化サークル第38代委員長として

学会発表

Third International Symposium on Computational Mechanics (ICSM III) and Second Symposium on Computational Structural Engineering (CSE II)
日時：2011年12月5～7日 会場：National Taiwan University, Taipei, Taiwan
・Reduction and Recovering Dynamic Method for Shear Wall with Irregular Openings
Buntara-Shenly GAN and Shuchi SEKINE
・A Genetic Algorithm for Solving Pile Foundation Placing Design
Hiroyuki NIHIMIYA and Buntara-Shenly GAN
・Seismic Assessment and Performance of Large Span Steel Structures after the 2011 Tohoku Earthquake
Junpei KUROKAWA and Buntara-Shenly GAN
・Outlined Sub-domain technique for Calculating Interface Stiffness in IPM Simulations
Naohiro KAWADA and Buntara-Shenly GAN
・Using NURBS in Homogenization of Architectural Wooden Walls
Keari FUIITA, Buntara-Shenly GAN and Atsushi MARUYAMA

シンポジウム「東日本大震災からの教訓、これからの新しい国づくり」
日時：2012年1月2日 会場：建築会館会議室
・二地域住民の可能性について ～福島型住民方式から復興に至る選択肢～
滑田崇志（はやうちウッドスタジオ）、浦部智義、芳賀満昭、遠藤洋一、早川真也
・福島型住民方式に対する仮設住宅に関する研究 ～ログハウス仮設住宅の特性について～
早川真也、浦部智義、芳賀満昭、滑田崇志、遠藤洋一

2012 International Conference on Structures and Building Materials
日時：2012年3月10～11日 会場：Hangzhou Xiangyuan Hotel, Hangzhou, China
・Genetically Finding Algorithm for a Tensegrity Structure
Buntara-Shenly GAN and Manabu YAMAMOTO

平成23年度卒業設計コンクール・展示会等出展作品

日本建築家協会「卒業設計コンクール2012」
加賀倉（指導：松井隆則 准教授）
・単線の間 - 一見単純な構造を一つに形成する-（松尾雅之（指導：松井隆則 准教授））

・レモン塗装「第35回学生設計優秀作品展」
宮戸宗一（指導：浦部智義 准教授）
・暖かさを持ち帰る ～暖かさを求める2軸を交差させることで形成する-（指導：浦部智義 准教授）

近代建築学「卒業制作-12」
佐久間浩治（指導：浦部智義 准教授）
・懸る器 - 行き場を失ったモノを炭坑内へ-（指導：浦部智義 准教授）

日本建築学会「全国大学・高等専門学校卒業設計展示会」
菅野浩（指導：浦部智義 准教授）
・まちのスクール ～密度感と開放性の共存-（指導：浦部智義 准教授）

日本インタリア学会「第19回卒業作品展」
近藤拓馬（指導：浦部智義 准教授）
・まちのハート ～新しくない新しいデザイン-（指導：浦部智義 准教授）

学外展示作品（左記5作品以外の4作品を加えた9作品）
野口 諭（指導：土方吉雄 准教授）
・Black sheepはセーターを着る ～文化交流テーマの提案-（指導：土方吉雄 准教授）

野村 晋（指導：土方吉雄 准教授）
・暖化 ～空間からのノスタルジア-（指導：土方吉雄 准教授）

永江崎（指導：若手正一 教授）
・野原光（指導：神田哲也 准教授）

・山の里 ～家具の作り方-（指導：山崎義明 准教授）

今年度の卒業展示は、2012年1月30日～2月1日間、70号館1階にて開催され、震災復興をテーマとした作品を中心に62件が展示を行った。また、2月16日～18日にはビッグアイ6階にて９作品による学外展示も開催された。

教室報『創建』発行者：浅田和茂・郡山市田村町 日本大学工学部建築学教室
編集：土方吉雄・市岡根太　TEL024-956-8742　印刷：石橋印刷